Contents lists available at ScienceDirect



# **Global Food Security**



journal homepage: www.elsevier.com/locate/gfs

# Food and nutrition security in persons with disabilities. A scoping review



# Robyn Moore<sup>a,\*</sup>, Shakila Dada<sup>a</sup>, Mohammad Naushad Emmambux<sup>b</sup>, Alecia Samuels<sup>a</sup>

<sup>a</sup> Centre for Augmentative and Alternative Communication, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
 <sup>b</sup> Department of Consumer and Food Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa

# ARTICLE INFO

Keywords: Food security Nutrition security

Disabilities

# ABSTRACT

Food and nutrition security (FNS) is achieved when food that is adequate in quantity, quality, safety and sociocultural acceptability is available, accessible and utilized satisfactorily by individuals to promote a healthy life. Persons with disabilities (PWD) are particularly vulnerable to food and nutrition insecurity, yet there seems to be a paucity of relevant research and policy. This scoping review identified 76 articles that met the criteria and describes the extent of research addressing FNS in PWD and categorizes studies according to the levels of social organization (individual to global). Literature is inadequate particularly regarding higher levels of social organization, national and global strategies for assessment and intervention, and indicators of FNS for people living with disabilities. More studies should explore intervention strategies that address FNS at community level.

## 1. Introduction

The concept and definition of food security was first introduced in the early 1940s (Pangaribowo et al., 2013). It was only after 1980 that it developed from a food supply perspective to one that considered food insecurity as a result of food scarcity and institutional failures that lead to suboptimal food distribution (Pangaribowo et al., 2013). The latter perspective acknowledges that food may be physically existent, but inaccessible to those who are in need (Gross et al., 2000).

The Food and Agriculture Organization of the United Nations (FAO) defines nutrition security as follows:

A condition when all people at all times consume food of sufficient quantity and quality in terms of variety, diversity, nutrient content and safety to meet their dietary needs and food preferences for an active and healthy life, coupled with a sanitary environment, adequate health and care (Committee on World Food Security, 2012 as cited in Pangaribowo et al., 2013, p. 5).

Food insecurity is a significant determinant of many forms of malnutrition (FAO, 2019). In upper-middle and high-income countries, living in a food-insecure household is a predictor of obesity in children and adults, while in low-income countries, severe food insecurity and undernutrition are more prevalent, as a result of income and wealth inequalities (FAO, 2019).

While food security focuses on the physical substances that people consume to maintain life and growth, nutrition adds aspects of health services, healthy environments and caring practices (Pangaribowo et al.,

# **2013).**

Food and nutrition security (FNS), a term coined by Gross et al., in 1998, is used to combine and highlight the relationship between the concepts of food security and nutrition security (Pangaribowo et al., 2013). FNS is achieved when food that is adequate in quantity, quality, safety and socio-cultural acceptability, is available and accessible for, as well as utilized satisfactorily by all individuals, at all times, to live a happy and healthy life (Gross et al., 2000).

The definition of FNS encompasses four main determinants: availability, accessibility, use and utilization, and stability (Weingartner, 2004). A further component is the temporal determinant, stability, which relates to each of the physical determinants (Weingartner, 2004). The inclusion of use and utilization as a determinant underscore the fact that nutrition security is more than food security.

In this context, availability refers to sufficient quantities of food being available on a consistent basis (El Bilali et al., 2018), at the household, regional or national level (Weingartner, 2004).

Accessibility implies that households and individuals within households have sufficient resources to obtain appropriate food for a nutritious diet (Gross et al., 2000). To a large extent, food access is influenced by food prices and household resources (Pieters et al., 2013). Every household has limited resources such as assets, labor, human capital and natural resources at its disposal (Pieters et al., 2013). Dorhmann and Thorat (2007) highlight socio-political factors that impact accessibility too, such as social discrimination and gender inequality.

Use of food is a socio-economic aspect of household food security

\* Corresponding author. *E-mail address:* robynleighmoore@gmail.com (R. Moore).

https://doi.org/10.1016/j.gfs.2021.100581

Received 29 June 2021; Received in revised form 15 September 2021; Accepted 16 September 2021 Available online 9 October 2021 2211-9124/© 2021 Elsevier B.V. All rights reserved. (Weingartner, 2004). Assuming that sufficient and nutritious food is available and accessible, households must decide *what* food will be purchased, prepared and consumed, and *how* food will be distributed within the household (Weingartner, 2004).

Utilization refers to the ability of the human body to ingest and metabolize food (Gross et al., 2000). It is the result of feeding practices, food preparation, dietary diversity and fair distribution of food within households (El Bilali et al., 2018).

Stability refers to the temporal element of FNS and affects all three physical elements (Gross et al., 2000). Stability incorporates *vulnerability* and *resilience*, where vulnerability refers to the likelihood of experiencing future welfare loss, and resilience refers to the ability to recover from such a welfare loss (Pieters et al., 2013).

The FIVIMS (Food Insecurity and Vulnerability Information and Mapping Systems) (Weingartner, 2004), a document presented by the FAO, identified persons with disabilities and the unemployed, homeless and orphaned as vulnerable and at high risk of food and nutrition insecurity. Persons with disabilities are particularly vulnerable to chronic food and nutrition insecurity as challenges of requesting food, feeding or swallowing (to name a few) could further aggravate their situation. This is especially alarming as the WHO (2011) estimates that more than 1 billion people live with some form of disability (i.e. about 15% of the world population), with the rates of disability increasing. The FAO estimates that 2 billion people worldwide experience moderate to severe levels of food insecurity (FAO, 2019).

Although the fields of food and nutrition insecurity and disability are interrelated, research on the two constructs has mostly been separate (Groce et al., 2014) owing to a poor understanding of their intersectionality (Quarmby and Pillay, 2018). Malnutrition and disability can both limit life opportunities severely (Groce et al., 2013). Both involve key human rights, are more prevalent in poor countries and feature within the global health agenda (Groce et al., 2013). Heflin et al. (2019) suggest an intrinsic link between food insecurity and disability, stating that food insecurity is more prevalent in households with disabilities, which constitute a large share of the overall food insecure population. According to Heflin et al. (2019), disabling health conditions interfere with a household's ability to provide adequate food and nutrition.

Schwartz et al. (2019), in their review on disability and food access and insecurity highlighted a total of 106 papers that met their inclusion criteria. The findings highlight that a number of access barriers were experienced by persons with disabilities. Some of these barriers to access include additional living expenses due to medical and disability related equipment (She and Livermore, 2007), use of public transport which limits purchasing options (Shannon, 2016) and difficulty physically shopping and preparing food which leads to purchasing more processed meals which are of a lower nutritional value and higher in cost (Bilyk et al., 2009). Schwartz et al. (2019) acknowledge that their review mostly included studies from high-income countries, and it can be assumed that these accessibility challenges are exacerbated in low- and middle-income countries. Whilst the Schwartz et al. (2019) study is an important review focusing on food security in persons with disabilities, it does not necessarily include the focus on Food and Nutrition security. Furthermore, the search terms and databases were limited. The authors believe there is great value in building on the Schwartz et al. (2019) review by addressing each of the determinants of FNS, as opposed to just accessibility as well as enhancing the search strategies and databases. Such a review would serve to not only highlight literature that may have been omitted by Schwartz et al. (2019) but could also include literature from lower and middle income countries.

Quarmby and Pillay (2018) argue that physical, social and financial barriers still do not encompass all the access issues that people with disabilities encounter daily. They should include behavioral or cognitive access such as self-feeding skills and physiologic access to food and liquid through swallowing, as additional issues that people living with disabilities could encounter (Quarmby and Pillay, 2018). Arvedson (2008) explains that the ability to feed is dependent on a number of different skills, capabilities and functions, which may be impaired in various ways in different types of disabilities. Quarmby and Pillay (2018) therefore argue that food access concerns like feeding and swallowing and reduced mobility or communication disorders resulting in a reduced ability to request food are significant when considering disability and FNS.

The determinants of FNS, i.e., availability, access, use and utilization, and stability of food affect all levels of social and administrative organizations – from the individual and household (micro level), to the community (sub-district, district and province) or meso level, and the nation and the global (macro) level (Weingartner, 2004).

Food and nutrition insecurity at different socio-organizational levels is caused by different factors and requires specific solutions at each level (Weingartner, 2004). Various instruments to assess FNS, indicators of FNS and intervention instruments of FNS exist at each of the social levels (Weingartner, 2004). A broad range of tools is used to measure FNS (Fielden et al., 2014) and instruments and processes selected for assessment of FNS are specific (though interlinked) at each level (Weingartner, 2004). For example, measures to assess access to food at the macro level differ from those used at micro and meso levels (Gross et al., 2000). A Vulnerability Analysis and Mapping (VAM) (Gross et al., 2000) instrument measures accessibility of food at the macro level, while food focus group discussions and intra-household food frequency questionnaires are more appropriate to measure access at the meso and micro levels respectively. Gross et al. (2000) suggest that FNS is a complex system that requires a holistic program approach, while Quarmby and Pillay (2018) argue that this system is even more complex when applied to persons with disabilities.

Since literature addressing food and nutrition security of people with disabilities is scarce, this review helps to determine the social levels covered in existing literature by addressing the following question: *What is the focus, extent and nature of literature on food and nutrition security related to people living with disabilities?* 

More specifically, the review had the following aims:

- Providing an overview of the general characteristics of available studies, i.e. the number, location and setting of studies, the types of disabilities, the study participants, and the group focused on (e.g. persons with disability, caregivers, healthcare workers).
- Mapping and categorizing the literature according to the various determinants of FNS addressed, namely availability, accessibility, use and utilization, and stability of food.
- Describing the assessment, indicators and interventions of FNS relating specifically to persons with disabilities and exploring where they map on the levels (micro, meso and macro) of social organization as proposed by Gross et al. (2000).
- Highlighting the gaps identified in this review relating to the determinants of FNS and persons with disabilities.

#### 2. Methods

Our scoping review followed five of the six steps detailed by Arksey and O'Malley (2005) as they allowed us to include a range of study designs and methods and collect information on a broad scope (Sucharew and Macaluso, 2019). The steps included identifying the research question and relevant studies, selecting studies, charting and collating the data, summarizing and reporting the results (Arksey & O'Malley, 2005). Our report followed the PRISMA-ScR proposed by Tricco et al. (2018). A systematic review was not deemed appropriate for our wide-ranging search, as it is more useful in answering specific questions and hypothesis testing (Tricco et al., 2016; Grant and Booth, 2009). Scoping reviews differ from systematic reviews in that they do not require a formal appraisal of the quality of evidence (Sucharew and Macaluso, 2019).

# 2.1. Search terms

The search terms were relevant to the review question and refined through pilot exploratory searches and consultation with a librarian. Search terms using keywords related to disability terminology and food and nutrition security terminology were used to replicate the search in each of the databases.

## 2.2. Data sources

The search terms were used to identify published research in the following databases: Scopus, Africa-Wide, Medline, Cumulative Index to Nursing and Allied Health Nursing (CINAHL) and Ebscohost. A multifaceted search strategy was used which included data base searches. Further searches included hand searches of Disability and Health Journal and Global Food Security journals and an ancestral search of studies that met the inclusion criteria. Search limiters were used to include only articles published in English between September 2015 and June 2020 (see Table 1).

#### 2.3. Eligibility criteria

Studies were selected using a screening relevance tool and screening was completed independently by two authors using Covidence, a webbased platform software application tool that enables efficient production of systematic reviews (Veritas Health Innovation, n.d.). A Title and Abstract Screening Relevance Tool was developed to screen study titles and abstracts, and to determine their eligibility for inclusion or exclusion based on the criteria in Table 2.

Based on the eligibility criteria, a 'yes', 'no' or 'maybe' response was selected at title and abstract level in Covidence. If both authors selected 'no', the study was excluded. If a reviewer selected 'yes' or 'maybe', the study was included at full text. At full text, a reason was selected from a list of drop-down options in Covidence to substantiate the exclusion of a study. The two authors completed this process blindly and independently. Discrepancies were discussed thereafter until consensus was reached.

#### Table 1

Search terms by database.

| Scopus                                                | ALL (disab* OR "special needs" OR "develop*<br>delay*") AND ALL ("food insecur*" OR "food<br>secur*" OR "nutr* secur" OR "nutrition* insecur*"<br>OR "nutrition* risk*" OR "nutrition* deficien*" OR<br>malnutrition OR malnourish*)            |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Africa-Wide                                           | Boolean/Phrase: (disab* OR "special needs" OR<br>"develop* delay*")<br>AND ("food insecur*" OR "food secur*" OR "nutr*<br>secur" OR "nutrition* insecur*" OR "nutrition*<br>risk*" OR "nutrition* deficien*" OR malnutrition<br>OR malnourisk*) |
| Ebscohost (Deselect Africa-<br>Wide, CINAHL, Medline) | Boolean/Phrase: (disab* OR "special needs" OR<br>"develop* delay*")<br>AND ("food insecur*" OR "food secur*" OR "nutr*<br>secur" OR "nutrition* insecur*" OR "nutrition*<br>risk*" OR "nutrition* deficien*" OR malnutrition<br>OR malnourish*) |
| Medline                                               | Boolean/Phrase: (disab* OR "special needs" OR<br>"develop* delay*")<br>AND ("food insecur*" OR "food secur*" OR "nutr*<br>secur" OR "nutrition* insecur*" OR "nutrition*<br>risk*" OR "nutrition* deficien*" OR malnutrition<br>OR malnourish*) |
| CINAHL                                                | Boolean/Phrase: (disab* OR "special needs" OR<br>"develop* delay*")<br>AND ("food insecur*" OR "food secur*" OR "nutr*<br>secur" OR "nutrition* insecur*" OR "nutrition*<br>risk*" OR "nutrition* deficien*" OR malnutrition<br>OR malnourish*) |

# Table 2

Inclusion and exclusion criteria.

| Inclusion criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Exclusion criteria                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Population<br>People with disabilities as defined by the<br>United Nations (2006) – any<br>"long-term physical, mental,<br>intellectual or sensory impairments<br>that, in interaction with various<br>attitudinal and environmental<br>barriers, hinder full and effective<br>participation in society on an equal<br>basis with others".<br>Including special needs, impairment,<br>developmental delay, developmental<br>disability, ASD, ADHD, dysphagia,<br>feeding difficulty, stroke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | People without disabilities; people at<br>risk of disabilities; people in poverty<br>situations; prematurity; sarcopenia; the<br>frail and the elderly.<br>Functional limitations, retarded growth<br>and epilepsy.<br>Mood disorders.<br>Noncommunicable diseases such as<br>diabetes, cancer, cardiovascular and<br>respiratory diseases.<br>People living with HIV/AIDS and/or TB.<br>Long-term health conditions. |
| Concept<br>Studies relating to food and nutrition<br>security and its determinants<br>(availability, accessibility, use and<br>utilization and stability).<br>Instruments to assess FNS such as food<br>balance sheets; agricultural<br>production plans; dietary recalls;<br>household food frequency<br>questionnaires; anthropometric<br>measurements (weight, BMI, mid-<br>upper arm circumference).<br>Indicators of FNS such as food<br>production; market and retail food<br>prices; food price fluctuation; meal<br>and food frequency in homes; stunting<br>rates; wasting rates; weight for age,<br>goiter; anemia.<br>Intervention instruments of FNS such<br>as small-scale irrigation projects; food<br>gardens; school-feeding programs.<br>Food security and nutrition<br>insecurity (stunting, wasting,<br>underweight, low birth weight).<br>Research published on malnutrition<br>and nutritional deficiencies (iron,<br>iodine, calcium, vitamin A, folate). | Research relating to overnutrition<br>(overweight or obesity) or risk of<br>overnutrition and high BMI.<br>Non-nutritional interventions, non-<br>nutritional pharmaceutical trials and<br>surgical interventions like PEG.                                                                                                                                                                                           |
| Design<br>Publication type – English only.<br>Published in peer-reviewed academic<br>journals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Publication type – Non-English<br>publications.<br>Published prior to September 2015.                                                                                                                                                                                                                                                                                                                                 |

#### 2.4. Data extraction

2020

Between September 2015 and June

A data-charting form was developed, as proposed by Levac et al. (2010), to extract all the relevant information needed from each article to answer the research question. Google Sheets was used to enter the data. The data-charting form includes general information regarding the study such as the year of publication, study location, descriptors of the study participants and aims of the study. A descriptive analytical method was adopted, and data was extracted and captured according to the information provided in each article. Where information was reported on individuals, data was captured as such, and the same for households or communities. More specific information relating to each of the sub-questions was also included on the data-charting form, such as the aspect of the FNS definition addressed (availability, accessibility, use and utilization and/or stability of food); the indicators, measures or interventions of FNS addressed; and the levels of social organization addressed.

Publications not available through the

University of Pretoria's library.

Data extraction was conducted by the first author independently and captured on the Google Sheets form. The second author then independently checked 50% of the data extracted and discrepancies were

discussed by the authors until consensus was established.

#### 3. Results

The search results are illustrated in the PRISMA-ScR (Tricco et al., 2018) diagram depicted in Fig. 1.

A total of 5768 titles and abstracts were independently screened by two authors. Thereafter, three reviewers screened 174 articles for eligibility, where 98 articles were excluded for not relating to food or nutrition security (i.e. patients with long-term health conditions listed in the exclusion criteria, the wrong publication type or study design). Articles not available through the University of Pretoria library were excluded as well as articles not published in English. A total of 76 articles were then included for data extraction, the general characteristics of which are detailed in Table 3.

#### 3.1. General characteristics of included studies

Of the 76 studies included, most originated in Japan (n = 9) (Kimura et al., 2017; Kishimoto et al., 2020; Nishioka et al., 2017, 2020; Sato et al., 2019; Shimizu et al., 2019; Takada et al., 2017; Tanaka et al., 2019; Yanagimoto et al., 2020), closely followed by the USA (n = 8)

(Barnhill et al., 2017; Evans et al., 2016, Holton et al., 2019; Keogh et al., 2020; Kushalnagar et al., 2018; Malone et al., 2016; Martinez et al., 2018; Raffee et al., 2019), and Brazil (n = 5) (Caramico-Favero et al., 2018; Castro et al., 2016; Castro et al., 2017; Dos Santos et al., 2018; Silva et al., 2017) (see Table 4). Spain (Barrio et al., 2020; Fuentes-Albero et al., 2019; Norte et al., 2019; Redondo Robles et al., 2019), China (Guo et al., 2019; Liu et al., 2016; Pei et al., 2016; Wang et al., 2016) and Malaysia (Ahmad et al., 2020; Sha'ari et al., 2017; Weun et al., 2019; Ying et al., 2019) each contributed four studies, while three studies each were conducted in Australia (Bell et al., 2019; Koritsas and Iacono, 2016; Spurway and Soldatic, 2016) and Iran (Aliasghari et al., 2019; Moludi et al., 2019; Shidfar et al., 2016). Two studies from each of the following countries were included: Egypt (Bebars et al., 2019; Meguid et al., 2017); Taiwan (Chang et al., 2017; Tsai et al., 2018); Mexico (García Iñiguez et al., 2017; García Iñiguez et al., 2018); Belgium (Huysentruyt et al., 2020; Leonard et al., 2020); India (Hariprasad et al., 2017; Malhi et al., 2017); Ghana (Donkor et al., 2019; Polack et al., 2018); and Chile (Barja and Perez, 2016; Figueroa et al., 2017). One study was included from Morocco (Hafid and Touhamiahami, 2018); Kuwait (Alkazemi et al., 2018); Thailand (Bualar, 2016); Malta (Coppini et al., 2018); Ethiopia (Endale and Tolossa, 2017); the UK (Hardy et al., 2018); Colombia (Herrera-Anava et al., 2016); Indonesia (Jahan et al.,

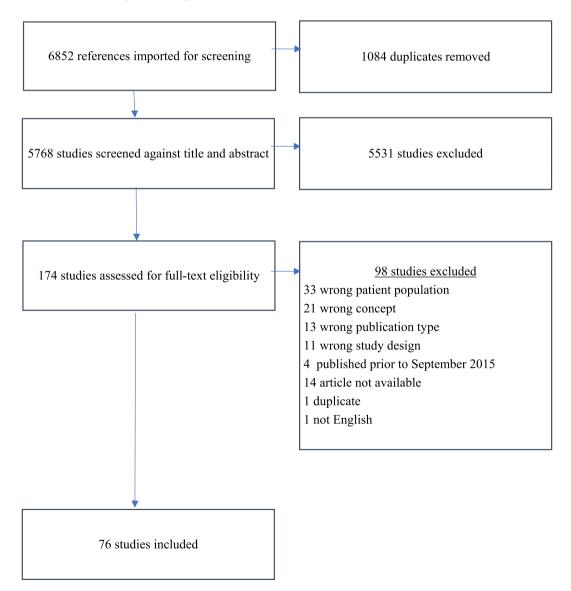



Fig. 1. PRISMA-ScR diagram (adapted from Tricco et al., 2018).

| Table | 3 |
|-------|---|
|-------|---|

ы

Summary of included studies.

|    | Title                                                                                                                                                                      | Authors                    | Year of publication | Study design                                                                 | Number of participants                   | Type of disability included                                                                                                        | Key findings                                                                                                                                                                                                           | Aspect of<br>definition of<br>FNS included | Social level of FNS addressed                     | Instrument used to assess FNS                                          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------|------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|
| 1  | Malnutrition is common in<br>children with cerebral palsy in<br>Saudi Arabia – a cross-sectional<br>clinical observational study                                           | Almuneef et al.            | 2019                | Cross-sectional<br>clinical<br>observational<br>study                        | 74                                       | Cerebral palsy                                                                                                                     | 41 children were<br>malnourished (55.4%)<br>72% and 66% had adequate<br>energy and protein intake<br>respectively                                                                                                      | Accessibility<br>Use &<br>utilization      | Micro –<br>Individual                             | Anthropometric<br>data                                                 |
| 2  | A multicenter cross-sectional<br>study to evaluate the clinical<br>characteristics and nutritional<br>status of children with cerebral<br>palsy                            | Aydin et al.               | 2018                | Cross-sectional,<br>non-interventional<br>multicenter single-<br>visit study | 1108                                     | Cerebral palsy                                                                                                                     | 766 (83.7%) participants had<br>some degree of malnutrition<br>according to WHO                                                                                                                                        | Use &<br>utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                 |
| 3  | Clinical assessment<br>underestimates fat mass and<br>overestimates resting energy<br>expenditure in children with<br>neuromuscular diseases                               | Barja and Pérez            | 2016                | A descriptive<br>observational<br>study                                      | 40                                       | Duchenne muscular<br>dystrophy (21); other<br>dystrophies (7);<br>muscular spinal<br>atrophy (7);<br>myopathies (3);<br>others (2) | 42.5% were undernourished<br>23 (57.5%) had low height/<br>age                                                                                                                                                         | Accessibility<br>Use &<br>utilization      | Micro –<br>Individual                             | Anthropometric<br>data                                                 |
| 4  | Growth status of children with<br>autism spectrum disorder: A<br>case-control study                                                                                        | Barnhill et al.            | 2017                | Case control study                                                           | 86 + 57<br>controls                      | Autism spectrum<br>disorder                                                                                                        | 30.6% were below 5th<br>percentile for MUAMC<br>5% were underweight<br>according to their BMI                                                                                                                          | Use &<br>utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                 |
| 5  | Assessment of some<br>micronutrients' serum levels in<br>children with severe acute<br>malnutrition with and without<br>cerebral palsy – A follow-up case<br>control study | Bebars et al.              | 2019                | Prospective<br>nonrandomized<br>case control study                           | 160 SAM (80<br>with CP) + 96<br>controls | Cerebral palsy                                                                                                                     | Malnourished children with<br>CP have significantly lower<br>serum levels (zinc, copper and<br>selenium) than non-<br>neurologically impaired<br>malnourished children.                                                | Use &<br>utilization                       | Micro –<br>Individual                             | Nutrient<br>deficiencies                                               |
| 6  | Oral health and nutritional<br>status of children with cerebral<br>palsy in northeastern peninsular<br>Malaysia                                                            | Ahmad et al.               | 2020                | Cross-sectional<br>study                                                     | 93                                       | Cerebral palsy                                                                                                                     | BMI: 8.1% thinness and<br>46.5% severe thinness<br>HAZ: 16.4% stunted and<br>81.4% severe stunted                                                                                                                      | Accessibility<br>Use &<br>utilization      | Micro –<br>Individual                             | Anthropometric<br>data                                                 |
| 7  | The nutritional status of adult<br>female patients with disabilities<br>in Kuwait                                                                                          | Alkazemi et al.            | 2018                | Cross-sectional<br>descriptive survey                                        | 53                                       | Intellectual and physical disabilities                                                                                             | MNA-SF1: 30 women at risk<br>and 8 malnourished<br>MNA-SF2: 25 at risk and 17<br>malnourished                                                                                                                          | Use &<br>utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>MNA-SF1 and MNA-<br>SF2                      |
| 8  | Development and validation of a<br>screening tool for feeding/<br>swallowing difficulties and<br>undernutrition in children with<br>cerebral palsy                         | Bell et al.                | 2019                | Prospective, cross-<br>sectional,<br>observational<br>study                  | 89                                       | Cerebral palsy                                                                                                                     | SGNA: 20 (22%) moderately<br>undernourished<br>SGNA: 6 (7%) severely<br>undernourished                                                                                                                                 | Use &<br>utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Subjective Global<br>Nutrition<br>Assessment |
| 9  | Municipality and food security<br>promotion for disabled people:<br>Evidence from north-eastern<br>Thailand                                                                | Bualar                     | 2016                | Qualitative study                                                            | 21                                       | Physical disabilities                                                                                                              | Some disabled persons want<br>to participate in paid jobs and<br>believe that earning money<br>from work could secure their<br>food access.<br>The final decision about food<br>is made for them by family<br>members. | Accessibility<br>Stability                 | Meso – District                                   |                                                                        |
| 10 | Food intake, nutritional status<br>and gastrointestinal symptoms in<br>children with cerebral palsy                                                                        | Caramico-<br>Favero et al. | 2018                | Cross-sectional<br>study                                                     | 40                                       | Cerebral palsy                                                                                                                     | The protein and carbohydrate<br>intake was above the RDA in<br>92.5% (37/40) and 85.0%                                                                                                                                 | Use &<br>utilization                       | Micro –<br>Individual and<br>household/<br>family | Anthopometric data<br>Household food<br>intake inquiry                 |

(continued on next page)

| Table 3 | (continued) |
|---------|-------------|
|---------|-------------|

6

|    | Title                                                                                                                                                                                                              | Authors                  | Year of publication | Study design                                                  | Number of participants | Type of disability included                    | Key findings                                                                                                                             | Aspect of<br>definition of<br>FNS included                         | Social level of<br>FNS addressed | Instrument used t<br>assess FNS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|---------------------------------------------------------------|------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------|---------------------------------|
| 11 | Assessment of nutritional status                                                                                                                                                                                   | Caselli et al.           | 2017                |                                                               | 54                     | Spastic quadriplegic                           | (34/40) of the participants<br>respectively.<br>72.22% of patients were                                                                  | Use &                                                              | Micro –                          | Anthropometric                  |
| 11 | of children and adolescents with<br>spastic quadriplegic cerebral<br>palsy                                                                                                                                         | Caselli et al.           | 2017                |                                                               | 54                     | cerebral palsy                                 | classified as eutrophic for BMI<br>22.22% were below the 25th<br>percentile for weight                                                   | utilization                                                        | Individual                       | data                            |
| 12 | Body composition of patients<br>with autism spectrum disorder<br>through bioelectrical impedance                                                                                                                   | Castro et al.            | 2017                |                                                               | 63                     | Autism spectrum<br>disorder                    | 15.8% were classified as underweight                                                                                                     | Use &<br>utilization                                               | Micro –<br>Individual            |                                 |
| 13 | Prevalence and factors<br>associated with food intake<br>difficulties among residents with<br>dementia                                                                                                             | Chang et al.             | 2017                | Cross-sectional<br>design                                     | 213                    | Dementia                                       | 21.6% of residents (n = 46)<br>had a lower BMI than the 18.5<br>kg/m2 defined by WHO as<br>being malnourished                            | Use &<br>utilization                                               | Micro –<br>Individual            |                                 |
| 14 | Scurvy in children with autistic<br>spectrum disorder: Not such a<br>rarity                                                                                                                                        | Coppini et al.           | 2018                | Case report                                                   | 3                      | Autism spectrum<br>disorder                    | -                                                                                                                                        |                                                                    | Micro –<br>Individual            |                                 |
| 15 | Alzheimer's disease: Nutritional<br>status and cognitive aspects<br>associated with disease severity                                                                                                               | Dos Santos<br>et al.     | 2018                | cross-sectional,<br>prospective and<br>observational<br>study | 43                     | Alzheimer`s disease                            | Nutritional status – Adequate<br>10 (31.3%)<br>Risk of malnutrition 21<br>(65.6%)<br>Malnutrition 1 (3.1%)                               | Use &<br>utilization                                               | Micro –<br>Individual            | Anthropometric<br>data<br>MNA   |
| .6 | Food security status of people<br>with disabilities in Selassie<br>Kebele, Hawassa Town,<br>Southern Ethiopia                                                                                                      | Endale et al.            | 2017                | Mixed – qualitative<br>and quantitative<br>approaches         | 80                     | Physical, visual, speech and or hearing        | 87.5% were found to be<br>chronically food insecure<br>5% of the participants<br>reported being food secure                              | Availability<br>Accessibility<br>Use &<br>utilization<br>Stability | Meso –<br>Province/City          | Coping Strategy<br>Index (CSI)  |
| 7  | Atypical eating behaviors<br>identified in children with fetal<br>alcohol spectrum disorders, aged<br>3–5 years, using the Children's<br>Eating Behavior Questionnaire<br>in a caregiver-reported online<br>survey | Shirley et al.           | 2016                | Descriptive cross-<br>sectional study                         | 74                     | Fetal alcohol<br>spectrum disorder             | 16% were underweight<br>according to BMI                                                                                                 | Use &<br>utilization                                               | Micro –<br>Individual            | Anthropometric<br>data          |
| .8 | Omega-3 long-chain<br>polyunsaturated fatty acids<br>intake in children with attention<br>deficit and hyperactivity<br>disorder                                                                                    | Fuentes-Albero<br>et al. | 2019                | Observational case-control study                              | 48                     | Attention deficit<br>hyperactivity<br>disorder | 4.2% had low weight                                                                                                                      | Accessibility<br>Use &<br>utilization                              | Micro –<br>Individual            | Anthropometric<br>data          |
| 9  | Energy expenditure is associated<br>with age, anthropometric<br>indicators and body composition<br>in children with spastic cerebral<br>palsy                                                                      | García Iñiguez<br>et al. | 2018                | Cross-sectional<br>study                                      | 79                     | Spastic cerebral palsy                         |                                                                                                                                          | Use &<br>utilization                                               | Micro –<br>Individual            | Anthropometric<br>data          |
| 20 | Assessment of anthropometric<br>indicators in children with<br>cerebral palsy according to the<br>type of motor dysfunction and<br>reference standard                                                              | García-Iñiguez<br>et al. | 2017                | Cross-sectional<br>design                                     | 103                    | Cerebral palsy                                 | Underweight by BMI: Female<br>19 (35.8%)<br>Underweight by BM: Male 15<br>(27.3%)<br>Stunted: Female 6 (11.3%)<br>Stunted: Male 1 (1.8%) | Use &<br>utilization                                               | Micro –<br>Individual            | Anthropometric<br>data          |
| 21 | Reliability of anthropometric<br>measurements in children with<br>special needs                                                                                                                                    | Hardy et al.             | 2018                | Observational study                                           | 53                     | Moderate-to-severe<br>learning disability      | Anthropometry and<br>bioelectrical impedance<br>analysis of body composition<br>were feasible to obtain in                               | Use &<br>utilization                                               | Micro –<br>Individual            | Anthropometric<br>data          |

(continued on next page)

|    | Title                                                                                                                                                      | Authors                 | Year of publication | Study design                                           | Number of participants | Type of disability included                    | Key findings                                                                                                                                                                                                                            | Aspect of<br>definition of<br>FNS included | Social level of FNS addressed | Instrument used to assess FNS                             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|--------------------------------------------------------|------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------|-----------------------------------------------------------|
|    |                                                                                                                                                            |                         |                     |                                                        |                        |                                                | children with special needs in<br>school settings.<br>Reliability of measurements<br>varied largely between<br>children who could stand and<br>those unable to stand<br>unassisted.                                                     |                                            |                               |                                                           |
| 22 | Association between gross motor<br>function and nutritional status in<br>children with cerebral palsy: A<br>cross-sectional study from<br>Colombia         | Herrera-Anaya<br>et al. | 2016                | Cross-sectional<br>study                               | 177                    | Cerebral palsy                                 | 89 (63.1%) patients had mild<br>or moderate to severe<br>malnutrition using weight-<br>for-age<br>117 (66.4%) had mild or<br>moderate to severe stunting<br>81 (46.3%) had mild or<br>moderate/severe malnutrition<br>using BMI-for-age | Use &<br>utilization                       | Micro –<br>Individual         | Anthropometric<br>data                                    |
| 23 | Evaluation of dietary intake in<br>children and college students<br>with and without attention-<br>deficit/hyperactivity disorder                          | Holton et al.           | 2019                |                                                        | 44                     | Attention deficit<br>hyperactivity<br>disorder | No significant differences<br>between those with and<br>without ADHD for<br>macronutrient and omega 3<br>fatty acid intake and overall<br>dietary quality                                                                               | Accessibility                              | Micro –<br>Individual         | Food records                                              |
| 24 | Nutritional red flags in children<br>with cerebral palsy                                                                                                   | Huysentruyt<br>et al.   | 2020                | Prospective,<br>longitudinal<br>observational<br>study | 325                    | Cerebral palsy                                 | Nutritional red flags, present<br>in about 40% of the Flemish<br>CP children                                                                                                                                                            | Use &<br>Utilization                       | Micro –<br>Individual         | Anthropometric<br>data                                    |
| 25 | Nutritional status of children<br>with cerebral palsy in remote<br>Sumba Island of Indonesia: A<br>community-based key<br>informants study.                | Jahan et al.            | 2019                | Community-based<br>key informant<br>method survey      | 130                    | Cerebral palsy                                 | 78.8% (n = 63) of the children<br>were severely underweight,<br>85.9% (n = 110) were<br>severely stunted                                                                                                                                | Use &<br>Utilization                       | Micro –<br>Individual         | Anthropometric<br>data                                    |
| 26 | Nutritional status of children<br>with cerebral palsy—findings<br>from prospective hospital-based<br>surveillance in Vietnam indicate<br>a need for action | Karim et al.            | 2019                | Active prospective<br>hospital-based<br>surveillance   | 765                    | Cerebral palsy                                 | 28.9% (n = 213) were<br>underweight<br>24.9% (n = 144) were wasted                                                                                                                                                                      | Use &<br>Utilization                       | Micro –<br>Individual         | Anthropometric<br>data                                    |
| 27 | Health, functional,<br>psychological and nutritional<br>status of cognitively impaired<br>long-term care residents in<br>Poland                            | Kijowska et al.         | 2020                | Cross-sectional<br>survey                              | 455                    | Cognitive impairment                           | 12.8% (58) were underweight                                                                                                                                                                                                             | Use &<br>Utilization                       | Micro –<br>Individual         | Anthropometric<br>data                                    |
| 28 | Combination of Low Body Mass<br>Index and Low Serum Albumin<br>Level leads to poor functional<br>recovery in stroke patients                               | Kimura et al.           | 2017                | Retrospective<br>observational<br>cohort study         | 259                    | Subacute stroke                                | Underweight status was present in 17.8%                                                                                                                                                                                                 | Use &<br>Utilization                       | Micro –<br>Individual         | Anthropometric<br>data                                    |
| 29 | Weight, nutrition, food choice,<br>and physical activity in adults<br>with intellectual disability                                                         | Koritsas and<br>Iacono  | 2016                |                                                        | 68                     | Intellectual<br>disabilities                   | No adults were underweight<br>17.6% of participants<br>achieved scores that put them<br>in the high-risk category<br>Participants with ID had little<br>choice in their food                                                            | Accessibility                              | Micro –<br>Individual         | Australian Nutrition<br>Screening Initiative<br>checklist |
| 30 | Communication barrier in family<br>linked to increased risks for food                                                                                      | Kushalnagar<br>et al.   | 2018                | Descriptive study                                      | 475                    | Deaf                                           | 8% 'often' experienced<br>problems with buying food or                                                                                                                                                                                  | Accessibility                              | Micro –<br>Individual         | (continued on next page                                   |

|    | Title                                                                                                                                                                              | Authors          | Year of publication | Study design                                     | Number of participants             | Type of disability included   | Key findings                                                                                                                                                                                                            | Aspect of<br>definition of<br>FNS included | Social level of<br>FNS addressed                  | Instrument used to assess FNS                             |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|--------------------------------------------------|------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|
|    | insecurity among deaf people<br>who use American Sign<br>Language                                                                                                                  |                  |                     |                                                  |                                    |                               | not being able to make the<br>food last, whereas 28%<br>reported experiencing this<br>'sometimes'.                                                                                                                      |                                            |                                                   | US Household Food<br>Security Survey<br>Module            |
| 31 | Protein-energy malnutrition is<br>frequent and precocious in<br>children with Cri du Chat<br>syndrome                                                                              | Lefranc et al.   | 2016                | Questionnaire-<br>based retrospective<br>study   | 36                                 | Cri du Chat syndrome          | 17 children (47%)<br>experienced protein energy<br>malnutrition                                                                                                                                                         | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                    |
| 32 | Nutritional status of<br>neurologically impaired<br>children: Impact on comorbidity                                                                                                | Leonard et al.   | 2020                | Single-center<br>retrospective study             | 260                                | Neurological<br>impairment    | 55 children had acute<br>malnutrition (28 moderate,<br>25 severe, two unclassified)<br>47 children had chronic<br>malnutrition (29 moderate,<br>18 severe)                                                              | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                    |
| 33 | Correlation between nutrition<br>and symptoms: Nutritional<br>survey of children with autism<br>spectrum disorder in Chongqing,<br>China                                           | Liu et al.       | 2016                | Cross-sectional<br>study                         | 154                                | Autism spectrum<br>disorder   | All Z-scores for the children<br>with ASD, including ZHA,<br>ZWA and ZBMIA were<br>significantly lower than those<br>for the TD children.<br>Higher rate of stunting/short<br>stature, compared to those<br>without ASD | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual                             | Anthropometric<br>data<br>Food records                    |
| 34 | Growth and nutritional risk in<br>children with developmental<br>delay                                                                                                             | Malone et al.    | 2016                | Retrospective<br>analysis                        | 415                                | Developmental<br>disabilities | 48.88% of patients were at<br>moderate or high nutritional<br>risk. 16.87% ( $n = 70$ ) were<br>deemed in the high nutritional<br>risk category                                                                         | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Parent Nutrition<br>Screening Checklist<br>(PNSC)         |
| 35 | Comprehensive nutritional and<br>metabolic assessment in patients<br>with spinal muscular atrophy:<br>Opportunity for an<br>individualized approach                                | Martinez et al.  | 2018                | Prospective study                                | 12                                 | Spinal muscle<br>atrophy      | Low prevalence of malnutrition in cohort (19%)                                                                                                                                                                          | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual                             | Anthropometric<br>data<br>Food records                    |
| 36 | Dietary adequacy of Egyptian<br>children with autism spectrum<br>disorder compared to healthy<br>developing children                                                               | Meguid et al.    | 2017                | Case-control study                               | 80<br>+80 TD<br>children           | Autism spectrum<br>disorder   | Weight, as well as weight for<br>height Z-score and weight for<br>age Z-score, were significantly<br>higher in children with<br>autistic disorder compared to<br>healthy controls                                       | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Food Frequency<br>Questionnaire |
| 37 | Anthropometric parameters of<br>nutritional status in children<br>with cerebral palsy                                                                                              | Melunovic et al. | 2017                |                                                  | 80                                 | Cerebral palsy                | 38 (47.5%) of respondents were underweight                                                                                                                                                                              | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                    |
| 38 | The effect of a practical nutrition<br>education programme on<br>feeding skills of caregivers of<br>children with cerebral palsy at<br>Muhimbili National Hospital, in<br>Tanzania | Mlinda et al.    | 2018                | A randomized<br>controlled<br>intervention study | Intervention:<br>63<br>Control: 47 | Cerebral palsy                | Intervention significantly<br>improved feeding skills of<br>caregiver in the selected<br>indicators assessed                                                                                                            |                                            | Micro –<br>Family/<br>household                   | Intervention:<br>Nutrition education                      |
| 39 | Comparison of dietary macro<br>and micronutrient intake with<br>physical activity levels among<br>children with and without<br>autism: A case-control study                        | Moludi et al.    | 2019                | Case-control study                               | ASD:30<br>29 Controls:29           | Autism spectrum<br>disorder   | Significant clinical deficiency<br>in nutrients intake of children<br>with autism<br>No significant difference in<br>BMI                                                                                                | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Food Frequency<br>Questionnaire |
| 40 | -                                                                                                                                                                                  | Nishioka et al.  | 2020                |                                                  | 420                                | Stroke                        |                                                                                                                                                                                                                         |                                            |                                                   |                                                           |

|    | Title                                                                                                                                                                            | Authors             | Year of publication | Study design                                                            | Number of participants | Type of disability included | Key findings                                                                                                                                                                                                                                     | Aspect of<br>definition of<br>FNS included | Social level of FNS addressed                     | Instrument used to assess FNS                                                                                                                                         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------------------------------------------------------------------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Concurrent and predictive<br>validity of the Mini Nutritional<br>Assessment Short-Form and the<br>Geriatric Nutritional Risk Index<br>in older stroke rehabilitation<br>patients |                     |                     | Retrospective<br>observational<br>cohort study                          |                        |                             | 125 patients were<br>malnourished (29.8%)                                                                                                                                                                                                        | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Malnutrition<br>Universal Screening<br>Tool<br>Mini Nutritional<br>Assessment - Short<br>Form<br>Geriatric Nutritional<br>Risk Index (GNRI) |
| 41 | Accuracy of non-paralytic<br>anthropometric data for<br>nutritional screening in older<br>patients with stroke and<br>hemiplegia                                                 | Nishioka et al.     | 2017                | Cross-sectional<br>study                                                | 488                    | Stroke                      | 483 at risk for malnutrition<br>205 had malnutrition                                                                                                                                                                                             | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Mini Nutritional<br>Assessment – Short<br>Form                                                                                              |
| 42 | Nutritional status and<br>cardiometabolic risk factors in<br>institutionalized adults with<br>cerebral palsy                                                                     | Norte et al.        | 2019                | Descriptive and<br>observational<br>analytical study                    | 41                     | Cerebral palsy              | BMI: Underweight 14 (34.1%)<br>More than 80% of the<br>population studied was<br>malnourished or at risk of<br>malnutrition, according to the<br>MNA tool classification ranges                                                                  | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Mini Nutritional<br>Assessment – Short<br>Form                                                                                              |
| 43 | Participation of physically<br>challenged people in agricultural<br>value chain: Implication on food<br>sustainability in Nigeria                                                | Ogunjumia<br>et al. | 2016                | Quantitative                                                            | 105                    | Physically challenged       | Majority of the physically<br>challenged people<br>participated in agriculture at<br>low level, due to the<br>constraints ranging from<br>discrimination, inadequate<br>assistance and rehabilitation<br>appropriate for agricultural<br>workers | Accessibility                              | Meso –<br>Community<br>(District/<br>Town)        |                                                                                                                                                                       |
| 44 | Effect of stroke on nutritional<br>status and its relationship with<br>dysphagia                                                                                                 | Barrio et al.       | 2020                | Observational,<br>descriptive,<br>longitudinal and<br>prospective study | 166                    | Stroke                      | Risk of malnutrition 22<br>(13.4%) – after three months:<br>28 (17.1%)<br>Malnutrition 1 (0.6%) – after<br>three months: 2 (1.2%)                                                                                                                | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Mini Nutritional<br>Assessment – Short<br>Form                                                                                              |
| 45 | Factors associated with activities<br>of daily living among the<br>disabled elders with stroke                                                                                   | Pei et al.          | 2016                | Cross-sectional<br>design                                               | 152                    | Stroke                      | Risk of malnutrition 117 (77.0%)                                                                                                                                                                                                                 | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                                                                                                                |
| 46 | Children with cerebral palsy in<br>Ghana: Malnutrition, feeding<br>challenges, and caregiver quality<br>of life                                                                  | Polack et al.       | 2018                | Cross-sectional<br>survey                                               | 76                     | Cerebral palsy              | 65% of children aged under 5<br>years were categorized as<br>underweight, 54% as stunted,<br>and 58% as wasted                                                                                                                                   | Use &<br>Utilization                       | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data                                                                                                                                                |
| 47 | Lessons in early identification<br>and treatment from a case of<br>disabling vitamin C deficiency in<br>a child with autism spectrum<br>disorder                                 | Rafee et al.        | 2019                | Single case report                                                      | 1                      | Autism spectrum<br>disorder | Youth with ASD are at<br>increased risk of experiencing<br>food selectivities that can<br>result in a variety of costly and<br>debilitating consequences,<br>particularly when associated<br>with nutritional deficiencies                       | Use &<br>Utilization                       | Micro –<br>Individual                             |                                                                                                                                                                       |
| 48 | Relationship of malnutrition<br>during hospitalization with<br>functional recovery and                                                                                           | Sato et al.         | 2019                | Retrospective<br>observational<br>study                                 | 205                    | Stroke                      | Prevalence of malnutrition<br>was 42% at admission and<br>76% at discharge                                                                                                                                                                       | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Geriatric Nutritional<br>Risk Index (GNRI)                                                                                                  |

(continued on next page)

| Table | 3 | (continued) |
|-------|---|-------------|
|-------|---|-------------|

|    | Title                                                                                                                                                                                                                        | Authors              | Year of publication | Study design                                      | Number of participants | Type of disability included | Key findings                                                                                                                                                                      | Aspect of<br>definition of<br>FNS included | Social level of<br>FNS addressed                  | Instrument used to<br>assess FNS                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|---------------------------------------------------|------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|    | postdischarge destination in<br>elderly stroke patients                                                                                                                                                                      |                      |                     |                                                   |                        |                             |                                                                                                                                                                                   |                                            |                                                   |                                                                                                                  |
| 9  | Assessment of nutritional status<br>in patients with Parkinson's<br>disease and its relationship with<br>severity of the disease                                                                                             | Shidfar et al.       | 2016                | Cross- sectional<br>study                         | 130                    | Parkinson's disease         | 58.5% (n = 76) at risk of<br>malnutrition and 11.5% (n =<br>15) malnourished according<br>to MNA.                                                                                 | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Mini Nutritional<br>Assessment – Shor<br>Form                                          |
| 0  | The Global Leadership Initiative<br>on Malnutrition – defined<br>malnutrition predicts prognosis<br>in persons with stroke-related<br>dysphagia                                                                              | Shimizu et al.       | 2019                | Retrospective<br>cohort study                     | 188                    | Stroke                      | A total of 122 (64.8%)<br>patients were diagnosed with<br>malnutrition                                                                                                            | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Mini Nutritional<br>Assessment – Shor<br>Form                                          |
| 1  | Malnutrition frequency among<br>cerebral palsy children:<br>Differences in onset of<br>nutritional intervention before<br>or after the age of five years                                                                     | Silva et al.         | 2017                | Case series study                                 | 68                     | Cerebral palsy              | 27% underweight, 38.2%<br>stunted, 42.6% malnourished<br>(BMI)                                                                                                                    | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual                             | Anthropometric<br>data<br>Food records                                                                           |
| 52 | Grouped factors of the SSADE<br>(signs and symptoms<br>accompanying dementia while<br>eating) and nutritional status —<br>An analysis of older people<br>receiving nutritional care in<br>long-term care facilities in Japan | Takada et al.        | 2017                | Cross-sectional<br>design                         | 259                    | Dementia                    |                                                                                                                                                                                   | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual                             | Anthropometric<br>data<br>Food records                                                                           |
| 3  | Relationship between nutritional<br>status and improved ADL in<br>individuals with cervical spinal<br>cord injury in a convalescent<br>rehabilitation ward                                                                   | Tanaka et al.        | 2019                | Retrospective cohort study.                       | 154                    | Spinal cord injury          | 71.4% of patients were<br>considered to be<br>malnourished or possibly<br>malnourished                                                                                            | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Subjective Global<br>Assessment                                                        |
| 1  | Prognostic impact of nutritional<br>risk assessment in patients with<br>chronic schizophrenia                                                                                                                                | Tsai et al.          | 2018                |                                                   | 542                    | Schizophrenia               | GNRI and OPNI demonstrated<br>a strong association with<br>hospital admission due to<br>infection                                                                                 | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Geriatric Nutritio<br>Risk Index (GNRI<br>Onodera's<br>Prognostic<br>Nutritional Index |
| 5  | A cross-sectional survey of<br>growth and nutritional status in<br>children with cerebral palsy in<br>West China                                                                                                             | Wang et al.          | 2016                | Cross-sectional<br>survey                         | 377                    | Cerebral palsy              | 160 (42.4%) were stunted, 48<br>(12.7%) underweight, 81<br>(21.5%) thin                                                                                                           | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                                                           |
| 6  | Nutritional status of post-acute<br>stroke patients during<br>rehabilitation phase in hospital                                                                                                                               | Weun et al.          | 2019                | Single-blinded,<br>randomized<br>controlled trial | 45                     | Stroke                      | 23.3% of male patients and<br>26.7% of the female patients<br>were malnourished based on<br>MNA categories<br>Majority of the patients were<br>at risk of malnutrition<br>(66.7%) | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual                             | Anthropometric<br>data<br>Food records<br>Mini Nutritional<br>Assessment – Sho<br>Form                           |
| 7  | Iron deficiency anemia, stunted<br>growth, and developmental<br>delay due to avoidant/restrictive<br>food intake disorder by<br>restricted eating in autism<br>spectrum disorder                                             | Yanagimoto<br>et al. | 2020                | Case study                                        | 1                      | Autism spectrum<br>disorder | Patient was diagnosed with<br>IDA and malnutrition due to<br>avoidant/restrictive food<br>intake disorder (ARFID)                                                                 | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Diet history                                                                           |

11

|    | Title                                                                                                                                                         | Authors                   | Year of publication | Study design                                     | Number of participants                  | Type of disability included | Key findings                                                                                                                                                                                                                                                    | Aspect of<br>definition of<br>FNS included | Social level of FNS addressed                     | Instrument used to<br>assess FNS                                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|--------------------------------------------------|-----------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 58 | Impact of premorbid<br>malnutrition and dysphagia on<br>ischemic stroke outcome in<br>elderly patients: A community-<br>based study                           | Aliasghari et al.         | 2019                | Cross-sectional<br>study                         | 253                                     | Stroke                      | 34.3% of the patients were<br>malnourished, 42.2% were at<br>risk of malnutrition, and<br>23.3% were well nourished.                                                                                                                                            | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data<br>Mini Nutritional<br>Assessment – Shor<br>Form                                                                           |
| 59 | Nutritional status in adolescents<br>with esophageal atresia                                                                                                  | Birketvedt et al.         | 2020                | Cross-sectional<br>cohort                        | 68                                      | Esophageal atresia          | Ten (15%) were classified as<br>stunted<br>Forty-eight (71%) showed<br>daily intake of energy below<br>age-appropriate<br>One-third reported an energy<br>intake below their estimated<br>basal metabolic rate                                                  | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Diet history                                                                                                            |
| 60 | Feeding behavior and dietary<br>intake of male children and<br>adolescents with autism<br>spectrum disorder: A case-<br>control study                         | Castro et al.             | 2016                | Case-control study                               | 49                                      | Autism spectrum<br>disorder | Low height for age and<br>thinness was found more in<br>the group with ASD than<br>among controls                                                                                                                                                               | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Food records                                                                                                            |
| 61 | Improving nutritional status of<br>children with cerebral palsy: A<br>qualitative study of caregiver<br>experiences and community-<br>based training in Ghana | Donkor et al.             | 2019                | Qualitative study                                | 17 caregivers<br>18 children<br>with CP | Cerebral palsy              | They felt that the training<br>program had helped reduce<br>this stress and dietary recall<br>data suggested some<br>improved dietary quality;<br>however, there was neither<br>improvement nor<br>deterioration in<br>anthropometric status of the<br>children | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Diet history<br>Intervention:<br>Monthly group<br>trainings and hom<br>visits, which<br>included guidance<br>on feeding |
| 62 | Morbimortality associated to<br>nutritional status and feeding<br>path in children with cerebral<br>palsy                                                     | Figueroa et al.           | 2017                | Observational and<br>prospective cohort<br>study | 81                                      | Cerebral palsy              | 37 patients (45.7%) had low<br>weight according to the WHO<br>curves or CDC-NCHS<br>(according to the age of the<br>patient)                                                                                                                                    | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                                                                                            |
| 63 | Vitamin A and vitamin D<br>deficiencies exacerbate<br>symptoms in children with<br>autism spectrum disorders                                                  | Guo et al.                | 2019                |                                                  | ASD: 332<br>Controls: 197               | Autism spectrum<br>disorder | Z-scores of the children with<br>ASD, including ZWA, ZHA<br>ZBMIA were significantly<br>lower than those of children in<br>the control group                                                                                                                    | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                                                                                            |
| 64 | Autistic children: Food habits<br>and the risk of running<br>malnutrition in Morocco                                                                          | Hafid and<br>Touhamiahami | 2018                | Descriptive cross-<br>sectional survey           | ASD: 325<br>Controls: 325               | Autism spectrum<br>disorder | Underweight ASD 23.38%<br>Control 12.6% according to<br>BMI                                                                                                                                                                                                     | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                                                                                            |
| 65 | Multiple nutritional deficiencies<br>in cerebral palsy compounding<br>physical and functional<br>impairments                                                  | Hariprasad<br>et al.      | 2017                | Cross-sectional<br>survey                        | 41                                      | Cerebral palsy              | 34 (82.9%) were severely<br>underweight with weight for<br>age <50%<br>35 (85.4%) had severe<br>stunting with height for age<br><85%<br>38 (92.7%) had severe<br>wasting with weight for<br>height <70% of the expected                                         | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Diet history                                                                                                            |
| 66 | What makes children with<br>cerebral palsy vulnerable to<br>malnutrition? Findings from the                                                                   | Jahan et al.              | 2019                | Prospective<br>population-based<br>surveillance  |                                         | Cerebral palsy              | Moderately underweight 113<br>(21.8%)<br>Severely underweight 250                                                                                                                                                                                               | Use &<br>Utilization                       | Micro –<br>Individual and                         | Anthropometric<br>data                                                                                                                            |

(continued on next page)

| Table 3 | (continued) |
|---------|-------------|
|         | (*********  |

|    | Title                                                                                                                                                                   | Authors               | Year of publication | Study design                                     | Number of participants | Type of disability included | Key findings                                                                                                                                                                                                                                                                                                                                                                                   | Aspect of<br>definition of<br>FNS included | Social level of FNS addressed                     | Instrument used to assess FNS                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|--------------------------------------------------|------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|
|    | Bangladesh Cerebral Palsy<br>Register (BCPR)                                                                                                                            |                       |                     |                                                  |                        |                             | (48.2%)<br>Moderately stunted 150<br>(20.7%)<br>Severely stunted 379 (52.4%)<br>Moderately wasted 39<br>(15.6%)<br>Severely wasted 52 (20.8%)                                                                                                                                                                                                                                                  |                                            | family/<br>household                              |                                                                           |
| 67 | Risk factors for malnutrition<br>among children with cerebral<br>palsy in Botswana                                                                                      | Johnson et al.        | 2017                | Case-control study                               | 61                     | Cerebral palsy              | 43% were malnourished                                                                                                                                                                                                                                                                                                                                                                          | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                    |
| 68 | Peer support and food security in deaf college students                                                                                                                 | Keogh et al.          | 2020                |                                                  | 166                    | Deaf                        | 26.4% were at risk for low<br>food security 12.9% had very<br>low food security                                                                                                                                                                                                                                                                                                                | Accessibility                              | Micro –<br>Individual and<br>family/<br>household | US Household Food<br>Security Survey<br>Module                            |
| 69 | Nutritional improvement is<br>associated with better functional<br>outcome in stroke rehabilitation:<br>A cross-sectional study using<br>controlling nutritional status | Kishimoto et al.      | 2020                | Cross-sectional<br>study                         | 134                    | Stroke                      | Improvement or maintenance<br>of nutritional status was<br>associated with better<br>functional recovery in post-<br>stroke rehabilitation of adult<br>patients of all ages                                                                                                                                                                                                                    | Use &<br>Utilization                       | Micro –<br>Individual                             | Anthropometric<br>data                                                    |
| 70 | Feeding problems and nutrient<br>intake in children with and<br>without autism: A comparative<br>study                                                                  | Malhi et al.          | 2017                | Comparative study                                | 60                     | Autism spectrum<br>disorder | Height, weight, or body mass<br>index also did not differ for<br>the two groups<br>Despite increased feeding<br>problems reported for the ASD<br>children, no differences were<br>found between the ASD and<br>typically developing children<br>on the overall intake of daily<br>calories                                                                                                     | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual and<br>family/<br>household | Anthropometric<br>data<br>Diet history<br>Food Frequency<br>Questionnaire |
| 71 | The intersection of disability and<br>food security: Perspectives of<br>health and humanitarian aid<br>workers                                                          | Quarmby and<br>Pillay | 2018                | Exploratory and<br>descriptive, mixed<br>methods |                        | Various                     | Highlighted the issue of<br>reduced food security through<br>the mechanism of reduced<br>food access, as not only does it<br>appear that people living with<br>disabilities are dependent on<br>their caregivers for food, but<br>these caregivers appear to<br>bear the burden of disability<br>and food insecurity where<br>financial and time demands<br>are high and resources are<br>few. |                                            | Micro –<br>Family/<br>household                   |                                                                           |
| 72 | Nutritional profile of multiple<br>sclerosis                                                                                                                            | Robles et al.         | 2019                | Cross-sectional<br>observational<br>study        |                        | Multiple sclerosis          | 6.5% of patients were at risk<br>of malnutrition (defined as<br>SGA category B) and 1.6%<br>were malnourished (defined<br>as SGA category C)<br>Only a small proportion of<br>patients (25.2%) met the daily<br>energy requirements                                                                                                                                                            | Accessibility<br>Use &<br>Utilization      | Micro –<br>Individual                             | Anthropometric<br>data<br>Diet history<br>Subjective Global<br>Assessment |
| 73 |                                                                                                                                                                         | Sha'ari et al.        | 2017                | Comparative cross-<br>sectional study            | 54                     |                             | According to BMI for age,<br>11.1% of the ADHD children                                                                                                                                                                                                                                                                                                                                        |                                            | Micro –<br>Individual and                         |                                                                           |

|    | Title                                                                                                                                                     | Authors                 | Year of publication | Study design             | Number of participants | Type of disability included                    | Key findings                                                                                                                                                                                                                                                     | Aspect of<br>definition of<br>FNS included                         | Social level of FNS addressed          | Instrument used to<br>assess FNS       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|--------------------------|------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|----------------------------------------|
|    | Nutritional status and feeding<br>problems in pediatric attention<br>deficit–hyperactivity disorder                                                       |                         |                     |                          |                        | Attention deficit<br>hyperactivity<br>disorder | had wasting and 1.9% had<br>severe wasting<br>The ADHD subjects consumed<br>more energy and<br>carbohydrate than TD<br>subjects                                                                                                                                  | Accessibility<br>Use &<br>Utilization                              | family/<br>household                   | Anthropometric<br>data<br>Food records |
| 74 | "Life just keeps throwing<br>lemons": The lived experience of<br>food insecurity among<br>Aboriginal people with<br>disabilities in the West<br>Kimberley | Spurway and<br>Soldatic | 2016                |                          | 16                     | Unspecified                                    | Lack of government<br>provisioning around health,<br>housing and disability<br>services and supports<br>compounded the poor<br>opportunities in the local<br>labour market, due to both<br>disability and race<br>discrimination, and the high<br>cost of living | Availability<br>Accessibility<br>Use &<br>Utilization<br>Stability | Meso<br>(Community) –<br>District/Town |                                        |
| 75 | Zinc and vitamin A deficiency in<br>a cohort of children with autism<br>spectrum disorder                                                                 | Sweetman et al.         | 2019                |                          | 74                     | Autism spectrum<br>disorder                    | The mean (SD) vitamin A level<br>was significantly higher in the<br>ASD group than in the control<br>group                                                                                                                                                       | Use &<br>Utilization                                               | Micro –<br>Individual                  |                                        |
| 76 | Factors associated with post-<br>stroke nutritional status in stroke<br>survivors under rehabilitation                                                    | Ying et al.             | 2019                | Cross-sectional<br>study | 169                    | Stroke                                         | Prevalence of malnutrition<br>was 8.9%<br>Older age stroke survivors<br>were at a 10% higher risk of<br>becoming malnourished<br>compared to younger stroke<br>survivors                                                                                         | Use &<br>Utilization                                               | Micro –<br>Individual                  | Anthropometric<br>data                 |

#### Table 4

Summary of measures of FNS used in included studies.

|   | Measure of FNS                                                  | Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Studies                                                                                                                                                                   |
|---|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Mini Sutritional Assessment (MNA)                               | <ul> <li>Stroke patients:</li> <li>34.3% – malnourished</li> <li>42.2% – at risk of malnutrition</li> <li>23.3% well nourished (Aliasghari et al., 2019)</li> <li>Risk of malnutrition increased from 13.4% to 17.1% after three month Malnutrition increased from 0.6% t</li> <li>1.2% (Barrio et al., 2020)</li> <li>99% – at risk of malnutrition (Nishioka et al., 2017)</li> <li>29.8% – malnourished (Nishioka et al., 2020);</li> <li>64.8% – diagnosed with malnutrition (Shimizu et al., 2014)</li> <li>3.3% of male stroke patients and 26.7% of female stroke patients and 26.7% of female stroke patients.</li> </ul> | <ul> <li>hs Nishioka et al. (2020);</li> <li>Norte et al. (2019);</li> <li>Shidfar et al. (2016);</li> <li>Shimizu et al. (2019);</li> <li>Weun et al. (2019).</li> </ul> |
|   | 1                                                               | malnourished (Weun et al., 2019<br>Intellectual disability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                                                                                                                                                                         |
|   |                                                                 | <ul> <li>More than 50% of women – at ris<br/>of malnutrition</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sk                                                                                                                                                                        |
|   |                                                                 | • 15% – malnourished (Alkazemi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |
|   |                                                                 | et al., 2018)<br>Alzheimers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                           |
|   |                                                                 | • 65.6% – at risk of malnutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
|   |                                                                 | <ul> <li>3.1% – malnourished (Dos Santos<br/>et al., 2018).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                                                                                                                                                                         |
|   |                                                                 | Cerebral palsy:<br>•More than 80% – malnourished or a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | at                                                                                                                                                                        |
|   |                                                                 | risk of malnutrition (Norte et al.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at                                                                                                                                                                        |
|   |                                                                 | 2019).<br>Parkinson's Disease:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |
|   |                                                                 | • 58.5% – at risk of malnutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                           |
|   |                                                                 | • 11.5% – malnourished (Shidfar et al., 2016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |
| 2 | Geriatric<br>Nutritional<br>Risk Index<br>(GNRI)                | Prevalence of malnutrition<br>in stroke patients was 42%<br>at admission and 76% at<br>discharge (Sato et al.,<br>2019).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nishioka et al. (2020);<br>Sato et al. (2019); Tsai<br>et al. (2018)                                                                                                      |
| 3 | Subjective<br>Global<br>Assessment                              | Multiple Sclerosis:<br>6.5% of patients – at risk of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Redondo Robles et al.,<br>2019; Tanaka et al. (2019)                                                                                                                      |
| 4 | Coping<br>Strategy<br>Index                                     | 87.5% of participants with<br>physical, visual, speech or<br>hearing disabilities –<br>chronically food insecure<br>5% of participants – food<br>secure                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Endale & Tolossa (2017)                                                                                                                                                   |
| 5 | Australian<br>Nutrition<br>Screening<br>Initiative<br>Checklist | 17.6% of participants with<br>ID fell in the high-risk<br>category for malnutrition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Koritsas & Iacono (2016)                                                                                                                                                  |
| 6 | US<br>Household<br>Food<br>Security<br>Survey<br>Module         | 17.6% of participants with<br>hearing disabilities – in the<br>high-risk category for food<br>insecurity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kushalnagar et al. (2018)                                                                                                                                                 |
| 7 | Subjective<br>Global<br>Nutrition                               | 22% of children with CP –<br>moderately<br>undernourished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bell et al. (2019)                                                                                                                                                        |
|   | Assessment                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                           |
| 8 |                                                                 | 7% – severely<br>undernourished<br>48.88% of patients with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Malone et al. (2016)                                                                                                                                                      |

#### Table 4 (continued)

|    | Measure of Find<br>FNS                                 | ings                                                                                                                                    | Studies                |  |  |
|----|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
|    | Screening<br>Checklist<br>(PNSC)                       | <ul> <li>at moderate or high<br/>nutritional risk</li> <li>16.87% - in the high<br/>nutritional risk category</li> </ul>                |                        |  |  |
| 9  | Malnutrition<br>Universal<br>Screening<br>Tool         | The combination of<br>measures used showed<br>29.8% of stroke patients<br>were malnourished.                                            | Nishioka et al. (2020) |  |  |
| 10 | ESPEN -<br>Diagnostic<br>Criteria for<br>Malnutrition  |                                                                                                                                         |                        |  |  |
| 11 | Onodera's<br>Prognostic<br>Nutritional<br>Index (OPNI) | GNRI and OPNI<br>demonstrated a strong<br>association with hospital<br>admission due to infection<br>in patients with<br>schizophrenia. | Tsai et al. (2018)     |  |  |

2019a,b); Vietnam (Karim et al., 2019); Poland (Kijowska et al., 2020); Tanzania (Mlinda et al., 2018); Boznia and Herzegovinia (Melunovic et al., 2017); Nigeria (Ogumjimia and Ajala, 2016); Norway (Birketvedt et al., 2020); Saudi Arabia (Almuneef et al., 2019); Turkey (Aydin et al., 2019); Bangladesh (Jahan et al., 2019a,b); Botswana (Johnson et al., 2017) and Ireland (Sweetman et al., 2019). Two of the included studies were conducted across multiple countries (Lefranc et al., 2016; Quarmby and Pillay, 2018).

The majority of studies (n = 44) involved children and 25 involved adults (see age of participants in Table 3). Three studies included samples from both children and adults, while four studies did not specify the age of participants. The types of disabilities mostly included were Cerebral Palsy (n = 24), Autism Spectrum Disorder (ASD) (n = 13) and Persons living with stroke (n = 11).

Fifty studies were conducted in hospital, rehabilitation or outpatient centre settings, while seven studies were conducted in communities.

The majority (n = 61) of included studies focused on the person with disability, while 11 studies involved persons with disabilities but used measures that required input from both the caregiver and the person with disability. One study used a measure that focused on the households of persons with disabilities, another dealt with persons with disabilities and disability workers, another with healthcare workers and humanitarian aid workers, and one study focused on persons with disabilities as well as municipalities and food vendors.

# 3.2. Mapping the literature according to the determinants of FNS addressed

Only two studies (Endale and Tolossa, 2017; Spurway and Soldatic, 2016) included the component of <u>availability</u> as a determinant of FNS, which relates to adequate food being at people's disposal (Gross et al., 2000). Endale and Tolossa (2017) reported that in Hawassa town, Ethiopia, periods of food shortage affected the food choices of households and more so the households of persons with disabilities. In rural Australia, aboriginal persons with disabilities struggled with the availability of food due to uneven distribution of supermarkets, poor quality of food stocked, and the unaffordable prices of nutritious food (Spurway and Soldatic, 2016).

More studies included <u>accessibility</u> as a determinant of FNS (n = 26). Accessibility in this context refers to households and individuals within households having sufficient resources to obtain appropriate foods for a nutritious diet (Gross et al., 2000). Indicators of FNS relating specifically to the dimension of accessibility include meal frequency and food frequency (Gross et al., 2000) where participants were required to use a checklist to indicate how often they ate specific food items over a specified period. Food frequency questionnaires were used as indicators of FNS in six of the included studies (Caramico-Favero et al., 2018; Endale and Tolossa, 2017; Fuentes-Albero et al., 2019; Malhi et al., 2017; Martinez et al., 2018; Meguid et al., 2017; Moludi et al., 2019). Some studies (n = 10) made use of 2-to 4-day food records to measure accessibility (Almuneef et al., 2019; Birketvedt et al., 2020; Castro et al., 2016; Holton et al., 2019; Liu et al., 2016; Malhi et al., 2017; Martinez et al., 2018; Sha'ari et al., 2017; Takada et al., 2017; Yanagimoto et al., 2020). Accessibility was measured by 24-h dietary recalls in nine studies (Ahmad et al., 2020; Barja and Perez, 2016; Donkor et al., 2019; Hariprasad et al., 2017; Holton et al., 2019; Liu et al., 2016; Silva et al., 2017; Weun et al., 2019), where participants were required to recall everything they consumed in a 24-h period.

Only a limited number of included studies described some of the barriers to food access as described in Schwartz et al. (2019) review. According to Bualar (2016) some persons with disabilities in Thailand desired to participate in paid jobs, which they felt would secure their access to food. In their study on persons who are Deaf in the USA, Kushalnagar et al. (2018) reported that up to 28% of participants sometimes experienced problems buying food or making food last, while a further 8% reported experiencing this often, highlighting challenges to access food. In another US study, about 26.4% of deaf students were at risk of low food security and a further 12.9% had very low food security (Keogh et al., 2020). This highlights an under representation in the literature of the unique challenges experienced by persons with disabilities in securing access to food.

<u>Use and utilization</u>, referring to the ability of the human body to ingest and metabolize food, was assessed using anthropometric data (Gross et al., 2000). Anthropometric data, the most common indicator of FNS across all the studies, was used in 58 of the 76 studies. Anthropometric data included, but was not limited to, weight for age, height for age, weight for height, BMI and BMI for age. Nutrient deficiencies, also indicators of the use and utilization dimension of FNS, were reported in nine studies indicating Vitamin A deficiency (Liu et al., 2016); Vitamin D deficiency (Leonard et al., 2020; Liu et al., 2016); Vitamin C deficiency (Coppini et al., 2018; Hafid and Touhamiahami, 2018; Raffee et al., 2019); iron deficiency (Hafid and Touhamiahami, 2018; Hariprasad et al., 2017; Leonard et al., 2020; Liu et al., 2016; Yanagimoto et al., 2020) and other trace element deficiencies (Bebars et al., 2019; Hafid and Touhamiahami, 2018; Leonard et al., 2020; Liu et al., 2020; Liu et al., 2016).

Liu et al. (2016) found that children with ASD had higher rates of Vitamin A and iron deficiency, while Hafid and Touhamiahami (2018) found higher rates of vitamin deficiencies among these children compared to controls. Raffee et al. (2019) attributed the higher risk of micronutrient deficiencies in children with ASD to the limited diversity of their food intake.

Most studies focusing on the nutritional status of persons with disabilities found an increased risk of malnutrition across most types of disabilities and ages, with some studies showing that more than 80% of the sample population suffered some degree of malnutrition according to the WHO (Aydin et al., 2019). Only four studies showed a low risk of malnutrition in their study populations, which included the following disabilities: intellectual disabilities (Koritsas and Iacono, 2016); ADHD (Fuentes-Albero et al., 2019); ASD (Moludi et al., 2019) and stroke (Ying et al., 2019).

In their assessment of food security status of persons with disabilities in Ethiopia, Endale and Tolossa (2017) differentiated between food security, seasonal food insecurity and chronic food insecurity, highlighting <u>stability</u> as a determinant of FNS. Of the 80 participants (persons with physical, visual, speech and hearing disabilities), none were found to be food secure and up to 87.5% were found to be chronically food insecure.

### 3.3. Describing assessment, indicators and interventions of FNS

# 3.3.1. Assessments and indicators of FNS

Measures of FNS utilized in the included studies included the

Subjective Global Nutrition Assessment (SGNA) (Bell et al., 2019); Subjective Global Assessment (SGA) (Tanaka et al., 2019; Redondo Robles et al., 2019); Mini Nutritional Assessment – Short Form (MNA-SF) (Alkazemi et al., 2018; Dos Santos et al., 2018; Nishioka et al., 2020; Nishioka et al., 2017; Norte et al., 2019; Barrio et al., 2020; Shidfar et al., 2016; Shimizu et al., 2019; Weun et al., 2019; Aliasghari et al., 2019); Coping Strategy Index (CSI) (Endale and Tolossa, 2017); Australian Nutrition Screening Initiative checklist (Koritsas and Iacono, 2016); US Household Food Security Survey Module (Kushalnagar et al., 2018); Parent Nutrition Screening Checklist (PNSC) (Malone et al., 2016); Malnutrition Universal Screening Tool (MUST) (Nishioka et al., 2020); Geriatric Nutritional Risk Index (GNRI) (Nishioka et al., 2020; Sato et al., 2019; Tsai et al., 2018); ESPEN Diagnostic Criteria for malnutrition (Nishioka et al., 2020); and Onodera's Prognostic Nutritional Index (Tsai et al., 2018).

The majority of the above measures were designed for elderly or general populations, and only a limited number were intended specifically for or validated for use with persons with disabilities. For example, the SGNA established validity for assessing nutritional status in children with a wide range of conditions and older than one month, including children with CP and Down's syndrome (Secker and Jeejeebhoy, 2007). The PNSC, a validated parent administered screening tool specifically for children with special needs, was used to assess nutritional risk in children over the age of one year presenting with developmental delay (Malone et al., 2016). In a sample of 415 children with developmental disabilities, a total 48.88% of patients were at moderate or high nutritional risk according to the PNSC (Malone et al., 2016).

#### 3.3.2. FNS interventions instruments

A limited number of studies (n = 2) addressed intervention for FNS by means of the WHO Severe Acute Malnutrition Protocol (Bebars et al., 2019) and nutritional education sessions for caregivers of children with CP (Donkor et al., 2019; Mlinda et al., 2018). Bebars et al. (2019) found that the WHO Severe Acute Malnutrition Protocol was effective in improving the serum levels of micronutrients in malnourished children with CP, but that children with CP required additional micronutrient supplementation to avoid further complications associated with micronutrient deficiency. Donkor et al. (2019) found that the training program was effective in alleviating caregiver stress and although the dietary recall data suggested that there was an improvement in dietary quality, no improvement in nutritional status was documented. Mlinda et al. (2018) concluded that a practical nutrition education intervention can improve caregiver-feeding skills for children with CP in low-income countries.

Most studies included in the review (n = 73) addressed the micro level of social organization which relates to individuals and families or households (Gross et al., 2000). The remaining three studies addressed the meso level of organization, which relates to the community (provinces, cities, districts, towns and villages) (Gross et al., 2000). None of the studies included addressed any of the dimensions of FNS on a national or global (macro) level.

Altogether 56 of the 76 studies focused on the person with the disability alone by assessing the nutritional status or dietary intake of individuals. An additional 13 studies included families and households by requesting caregivers to report on their child's dietary intake or assessed the food frequency of the family or household. A small number of studies focused solely on the family or household by investigating FNS challenges for caregivers of persons with disabilities (Malhi et al., 2017) and intervention studies for their caregivers (Donkor et al., 2019; Mlinda et al., 2018).

# 4. Concluding remarks

Food and nutrition security combines the concepts of food security and nutrition security. It shifts the focus away from one or the other, and the use and utilization of food in the definition of FNS highlights the biological aspect of FNS as opposed to only a physical aspect of food availability and access (Gross et al., 2000). This review however found that all the studies included either addressed food security or nutrition security, and none of them considered food and nutrition security as a combined construct for people with disabilities. The vast majority of studies focused on nutrition security in persons with disabilities, and only four studies looked at food security of persons with disabilities. This shows a significant gap in the literature.

The aim of the review, in part, was to map existing literature on FNS and disability, according to the determinant of FNS and the level of social organization addressed. The review found that the literature is unevenly distributed in both respects. The majority of studies included in the review assessed the nutritional status of persons with disabilities, focusing mostly on the use and utilization aspect of FNS, and honing in on the situation at the individual (micro) level. As the included studies mostly focused on the use and utilization of food, little is known about the availability of and access to food for persons with disabilities, and even less is known on the challenges their caregivers face in accessing nutritious food. The unique challenges to accessing food experienced by persons with disabilities is still poorly understood. Schwartz et al. (2019) argue that questioning why persons with disabilities experience greater financial deprivation, social discrimination and environmental barriers will lead to a better understanding of food access in the context of persons with disabilities.

Eleven different measures were used to assess nutritional risk in a range of disability conditions, but only two – the SGNA and PNSC – were designed or validated specifically for persons with disabilities, thus highlighting a gap in the measures of FNS for persons with disabilities. High risk of malnutrition was reported in several studies using the various measures as listed, but as mentioned, the risk of malnutrition is higher among persons with disabilities compared to the general population. Indicators and measures of FNS should be sensitive and specific to persons with disabilities to provide a more accurate picture of the risk of malnutrition in this population.

The gaps in the literature identified in the review highlight various opportunities for further research. Future research should identify relevant indicators, measures of assessment and instruments for intervention for persons with disabilities. While there are limited measures of food security and nutrition security as separate concepts, there is a need for measures that address both. Identifying the extent of FNS at various levels of social organization and focusing more on meso and macro levels should be a priority in future research, as it will aid in developing interventions to address food and nutrition insecurity on a larger scale.

Limitations of this review include language and publication biases, as only studies published in English were included. Although the search terms were established in consultation with two subject librarians and piloted, there is still a possibility that some disability groups may have been excluded from the search. The review's aim to provide a global perspective on FNS and disabilities may have been hampered by the exclusion of studies published in other languages or studies that the authors were not able to access through the University of Pretoria's library online.

#### Funding

This project is funded by the DSI-NRF Centre of Excellence in Food Security under the grant ID 91490.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### References

- Ahmad, R., Rahman, N.A., Hasan, R., Yaacob, N.S., Ali, S.H., 2020. Oral health and nutritional status of children with cerebral palsy in northeastern peninsular Malaysia. Spec. Care Dent. 40 (1), 62–70. https://doi.org/10.1111/scd.12436.
- Aliasghari, F., Izadi, A., Khalili, M., Farhoudi, M., Ahmadiyan, S., Deljavan, R., 2019. Impact of premorbid malnutrition and dysphagia on ischemic stroke outcome in elderly patients: a community-based study. J. Am. Coll. Nutr. 38 (4), 318–326. https://doi.org/10.1080/07315724.2018.1510348.
- Alkazemi, D., Zadeh, M.H., Zafar, T., Kubow, S.J., 2018. The nutritional status of adult female patients with disabilities in Kuwait. Journal of Taibah University Medical Sciences 13 (3), 238–246. https://doi.org/10.1016/j.jtumed.2018.01.002.
- Almuneef, A., Almajwal, A., Alam, I., Abulmeaty, M., Bader, B., Almuammar, M., Razak, S., 2019. Malnutrition is common in children with cerebral palsy in Saudi Arabia – a cross-sectional clinical observational study. BMC Neurol. 19 (1), 317. https://doi.org/10.1186/s12883-019-1553-6.
- Arksey, H., O'Malley, L., 2005. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8 (1), 19–32. https://doi.org/10.1080/ 1364557032000119616.
- Arvedson, J.C., 2008. Assessment of pediatric dysphagia and feeding disorders: Clinical and instrumental approaches. Developmental Disabilities Research Reviews 14 (2), 118–127. https://doi.org/10.1002/ddrr.17.
- Aydin, K., Kartal, A., Keles Alp, E., 2019. High rates of malnutrition and epilepsy: two comorbidities in children with cerebral palsy. Turk. J. Med. Sci. 49 (1), 33–37. https://doi.org/10.3906/sag-1803-79.
- Barja, S., Perez, R., 2016. Clinical assessment underestimates fat mass and overestimates resting energy expenditure in children with neuromuscular diseases. Clinical Nutrition ESPEN 11–15. https://doi.org/10.1016/j.clnesp.2016.03.079.
- Barnhill, K., Guitierrez, A., Ghossainy, M., Marediya, Z., Marti, C., Hewitson, L., 2017. Growth status of children with autism spectrum disorder: a case-control study. J. Hum. Nutr. Diet. 30 (1), 59–65. https://doi.org/10.1111/jhn.12396.
- Barrio, M.A.O., Sieiro, F.V., Fernandez, M.T.A., Santamaria, S.B., Maestro, R.M., 2020. Effect of stroke on nutritional status and its relationship with dysphagia. Scientific Journal of the Spanish Society of Neurological Nursing 51 (C), 13–21. https://doi. org/10.1016/j.sedeng.2019.04.003.
- Bebars, G., Afifi, M., Mahrous, D., Okaily, N., Mounir, S., Mohammed, E., 2019. Assessment of some micronutrients serum levels in children with severe acute malnutrition with and without cerebral palsy – a follow-up case control study. Clinical Nutrition Experimental 23, 34–43. https://doi.org/10.1016/j. yclnex.2018.10.008.
- Bell, K., Benfer, K., Ware, R., Patrao, T., Garvey, J., Arvedson, J., Body, R., Davies, P., Weir, K., 2019. Development and validation of a screening tool for feeding/ swallowing difficulties and undernutrition in children with cerebral palsy. Dev. Med. Child Neurol. 61 (10), 1175–1181. https://doi.org/10.1111/dmcn.14220.
- Bilyk, M.C., Sontrop, J.M., Chapman, G.E., Barr, S.I., Mamer, L., 2009. Food experiences and eating patterns of visually impaired and blind people. Can. J. Diet Pract. Res. : a publication of Dietitians of Canada 70 (1), 13–18. https://doi.org/10.3148/ 70.1.2009.13.
- Birketvedt, K., Mikkelsen, A., Klingen, L.L., Henriksen, C., Helland, I.B., Emblem, R., 2020. Nutritional status in adolescents with esophageal atresia. J. Pediatr. 218, 130–137. https://doi.org/10.1016/j.jpeds.2019.11.034.
- Bualar, T., 2016. Municipality and food security promotion for disabled people: evidence from north-eastern Thailand. Dev. Pract. 26 (4), 481–491. https://doi.org/10.1080/ 09614524.2016.1159661.
- Caramico-Favero, D.C.O., Guedes, Z.C.F., de Morais, M.B., 2018. Food intake, nutritional status and gastrointestinal symptoms in children with cerebral palsy. Arq. Gastroenterol. 55 (4), 352–357. https://doi.org/10.1590/S0004-2803.201800000-78.
- Castro, K., Faccioli, L.S., Baronio, D., Gottfried, C., Schweigert Perry, I., Riesgo, R., 2017. Body composition of patients with autism spectrum disorder through bioelectrical impedance. Nutr. Hosp. 34 (4), 875–879. https://doi.org/10.20960/nh.210.
- Castro, K., Faccioli, L.S., Baronio, D., Gottfried, C., Schweigert Perry, I., Riesgo, R., 2016. Feeding behavior and dietary intake of male children and adolescents with autism spectrum disorder: a case-control study. Int. J. Dev. Neurosci. 53, 68–74. https://doi. org/10.1016/j.ijdevneu.2016.07.003 0736-5748.
- Chang, C., Lin, Y., Chiu, C., Liao, Y., Ho, M., Lin, Y., Chou, K., Liu, M., 2017. Prevalence and factors associated with food intake difficulties among residents with dementia. PloS One 12 (2). https://doi.org/10.1371/journal.pone.0171770.
- Coppini, J., Borg, C., Vella, C., 2018. Scurvy in children with autistic spectrum disorder: not such a rarity. Malta Med. J. 30 (2), 60–63.
- Donkor, C.M., Lee, J., Lelijveld, N., Adams, M., Baltussen, M.M., Nyante, G.G., Kerac, M., Polack, S., Zuurmond, M., 2019. Improving nutritional status of children with Cerebral palsy: a qualitative study of caregiver experiences and community-based training in Ghana. Food Sci. Nutr. 7, 35–43. https://doi.org/10.1002/fsn3.788.
- Dorhmann, J.A., Thorat, S., 2007. Right to food, food security and discrimination in the Indian context. The German Journal on Contemporary Asia 102, 9–13. https://doi. org/10.11588/asien.2007.102.14975. S.
- Dos Santos, T.B.N., Fonseca, L.C., Tedrus, G.M., Berdardi, J.L.D., 2018. Alzheimer's disease: nutritional status and cognitive aspects associated with disease severity. Nutr. Hosp. 35 (6), 1298–1304. https://doi.org/10.20960/nh.2067.
- El Bilali, H., Callenius, C., Strassner, C., Probst, L., 2018. Food and nutrition security and sustainability transitions in food systems. Food and Energy Security 8 (2). https:// doi.org/10.1002/fes3.154.
- Endale, F., Tolossa, D., 2017. Food security status of people with disabilities in Selassie Kebele, Hawassa town, Southern Ethiopia. Ethiop. J. Soc. Sci. Humanit. 13 (1) https://doi.org/10.4314/ejossah.v13i1.5.

#### R. Moore et al.

- Evans, S., Payton, M., Kennedy, T., 2016. Atypical eating behaviors identified in children with fetal alcohol spectrum disorders, aged 3 to 5 years, using the Children's Eating Behavior Questionnaire in a caregiver-reported online survey. Journal of Intellectual Disability – Diagnosis and Treatment 4 (4), 191–203. https://doi.org/10.6000/ 2292-2598.2016.04.04.2.
- Fielden, S.J., Anema, A., Fergusson, P., Muldoon, K., Grede, N., de Pee, S., 2014. Measuring food and nutrition security: Tools and considerations for use among people living with HIV. AIDS and Behavior 18 (5), S490–S504. https://doi.org/ 10.1007/s10461-013-0669-8.
- Figueroa, M.J., Rojas, C., Barja, S., 2017. Morbimortality associated to nutritional status and feeding path in children with cerebral palsy. Rev. Chil. Pediatr. 88 (4), 478–486. https://doi.org/10.4067/S0370-41062017000400006.
- Food and Agriculture Organization, International Fund for Agricultural Development World Food Program, United Nations Children's Fund & World Health Organization, 2019. The State of Food Insecurity in the World. Safeguarding against Economic Slowdowns and Downturns. FAO, Rome, Italy.
- Fuentes-Albero, M., Martinez-Martinez, M.I., Cauli, O., 2019. Omega-3 long-chain polyunsaturated fatty acids intake in children with attention deficit and hyperactivity disorder. Brain Sci. 9 (5) https://doi.org/10.3390/brainsci9050120.
- Garcia-Iniguez, J.A., Vasquez-Garibay, E.M., Garcia-Contreras, A.A., Romero-Velarde, E., Troyo-Sanroman, R., 2017. Assessment of anthropometric indicators in children with cerebral palsy according to the type of motor dysfunction and reference standard. Nutr. Hosp. 34 (2), 315–322. https://doi.org/10.20960/nh.353.
- Garcia-Iniguez, J.A., Vasquez-Garibay, E.M., Garcia-Contreras, A.A., Romero-Velarde, E., Troyo-Sanroman, R., Rocha, J.H., Rosas, A.R., Leon, M.R., Martinez, E.U., 2018. Energy expenditure is associated with age, anthropometric indicators and body composition in children with spastic cerebral palsy. Nutr. Hosp. 35 (4), 909–913. https://doi.org/10.20960/nh.1696.
- Grant, M.J., Booth, A., 2009. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 26 (2), 91–108. https://doi.org/ 10.1111/j.1471-1842.2009.00848.x.
- Groce, N., Challenger, E., Berman-Bieler, R., Farkas, A., Yilmaz, N., Schultink, W., Clark, D., Kaplan, C., Kerac, M., 2014. Malnutrition and disability: Unexplored opportunities for collaboration. Paediatr. Int. Child Health 34 (4), 308–314. https:// doi.org/10.1179/2046905512Y.0000000156.
- Groce, N.E., Kerac, M., Farkas, A., Schultink, W., Bieler, R.B., 2013. Inclusive nutrition for children and adults with disabilities. The Lancet Global Health 1 (4), 180–181. https://doi.org/10.1016/S2214-109X(13)70056-1.
- Gross, R., Schoeneberger, H., Pfeifer, H., Preuss, H.A., 2000. The Four Dimensions of Food and Nutrition Security: Definitions and Concepts. http://www.fao.org/elearni ng/course/fa/en/pdf/p-01\_rg\_concept.pdf.
  Guo, M., Zhu, J., Yang, T., Lai, X., Lei, Y., Chen, J., Li, T., 2019. Vitamin A and vitamin D
- Guo, M., Zhu, J., Yang, T., Lai, X., Lei, Y., Chen, J., Li, T., 2019. Vitamin A and vitamin D deficiencies exacerbate symptoms in children with autism spectrum disorders. Nutr. Neurosci. 22 (9), 637–647.
- Hafid, A., Touhamiahami, A.O., 2018. Autistic children food habits and the risk of running malnutrition in Morocco. Asian Journal of Epidemiology 11 (1), 8–13. https://doi.org/10.3923/aje.2018.8.13.
- Hardy, J., Kuter, H., Campbell, M., Canoy, D., 2018. Reliability of anthropometric measurements in children with special needs. Arch. Dis. Child. 103 (8), 757–762. https://doi.org/10.1136/archdischild-2017-314243.
- Hariprasad, P.G., Elizabeth, K.E., Valamparampil, M.J., Kalpana, D., Anish, T.S., 2017. Multiple nutritional deficiencies in cerebral palsy compounding physical and functional impairments. Indian J. Palliat. Care 23, 387–392. https://doi.org/ 10.4103/IJPC.IJPC\_52\_17 10.4103/IJPC.IJPC\_52\_17.
- Heflin, C.M., Altman, C.E., Rodriguez, L.L., 2019. Food insecurity and disability in the United States. Disability and Health Journal 12 (2), 220–226. https://doi.org/ 10.1016/j.dhjo.2018.09.006.
- Herrera-Anaya, E., Angarita-Fonseca, A., Herrera-Galindo, V.M., Martinez-Marin, R.D.P., Rodriguez-Bayona, C.N., 2016. Association between gross motor function and nutritional status in children with cerebral palsy: a cross-sectional study from Colombia. Dev. Med. Child Neurol. 58 (9), 936–941. https://doi.org/10.1111/ dmcn.13108.
- Holton, K., Johnstone, J., Brandley, E., Nigg, J., 2019. Evaluation of dietary intake in children and college students with and without attention-deficit/hyperactivity disorder. Nutr. Neurosci. 22 (9), 664–667. https://doi.org/10.1080/ 1028415X.2018.1427661.
- Huysentruyt, K., Geeraert, F., Allemon, H., Prinzie, P., Roelants, M., Ortibus, E., Vandenplas, Y., De Schepper, J., 2020. Nutritional red flags in children with cerebral palsy. Clin. Nutr. 39 (2), 548–553. https://doi.org/10.1016/j.clnu.2019.02.040.
- Jahan, I., Muhit, M., Hardianto, D., Karim, T., Al Imam, M.H., Das, M.C., Smithers-Sheedy, H., Badawi, N., Khandaker, G., 2019a. Nutritional status of children with cerebral palsy in remote Sumba Island of Indonesia: a community-based key informants study. Disabil. Rehabil. https://doi.org/10.1080/ 09638288.2019.1676833.
- Jahan, I., Muhit, M., Karim, T., Smithers-Sheedy, H., Novak, I., Jones, C., Badawi, N., Khandaker, G., 2019b. What makes children with cerebral palsy vulnerable to malnutrition? Findings from the Bangladesh Cerebral Palsy Register (BCPR). Disabil. Rehabil. 41 (19), 2247–2254. https://doi.org/10.1080/09638288.2018.1461260.
- Johnson, A., Gambrah-Sampaney, C., Khurana, E., Baier, J., Baranov, E., Monokwane, B., Bearden, D.R., 2017. Risk factors for malnutrition among children with cerebral palsy in Botswana. Pediatr. Neurol. 70, 50–55. https://doi.org/10.1016/j. pediatrneurol.2017.02.003.
- Karim, T., Jahan, I., Dossetor, R., Giang, N.T.H., Van Anh, N.T., Dung, T.Q., Chau, C.M., Van Bang, N., Badawi, N., Khadanker, G., Elliott, E., 2019. Nutritional status of children with cerebral palsy – findings from prospective hospital-based surveillance

in Vietnam indicate a need for action. Nutrients 11 (9). https://doi.org/10.3390/ nu11092132.

- Keogh, B., Kushalnagar, P., Engelman, A., 2020. Peer support and food security in deaf college students. J. Am. Coll. Health 68 (1), 1–5. https://doi.org/10.1080/ 07448481.2018.1515750.
- Kijowska, V., Baranska, I., Szczerbińska, K., 2020. Health, functional, psychological and nutritional status of cognitively impaired long-term care residents in Poland. European Geriatric Medicine 11 (2), 255–267. https://doi.org/10.1007/s41999-019-00270-5.
- Kimura, Y., Yamada, M., Kakehi, Y., Itagaki, A., Tanaka, N., Muroh, Y., 2017. Combination of low Body Mass Index and low serum albumin level leads to poor functional recovery in stroke patients. J. Stroke Cerebrovasc. Dis. 26 (2), 448–453. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.10.008.
- Kishimoto, H., Yozu, A., Kohno, Y., Oose, H., 2020. Nutritional improvement is associated with better functional outcome in stroke rehabilitation: a cross-sectional study using controlling nutritional status. J. Rehabil. Med. 52 (3), jrm00029. https:// doi.org/10.2340/16501977-2655.
- Koritsas, S., Iacono, T., 2016. Weight, nutrition, food choice, and physical activity in adults with intellectual disability. J. Intellect. Disabil. Res. 60 (4), 355–364. https:// doi.org/10.1111/jir.12254.
- Kushalnagar, P., Moreland, C., Simons, A., Holcomb, T., 2018. Communication barrier in family linked to increased risks for food insecurity among deaf people who use American Sign Language. Publ. Health Nutr. 21 (5), 912–916. https://doi.org/ 10.1017/S1368980017002865.
- Leonard, M., Dain, E., Pelc, K., Dan, B., De Laet, C., 2020. Nutritional status of neurologically impaired children: impact on comorbidity. Arch. Pediatr. 27 (2), 95–103. https://doi.org/10.1016/j.arcped.2019.11.003.
- Lefranc, V., de Luca, A., Hankard, R., 2016. Protein-energy malnutrition is frequent and precocious in children with Cri du Chat syndrome. Am. J. Med. Genet. 170 (5), 1358–1362. https://doi.org/10.1002/ajmg.a.37597.
- Levac, D., Culquhoun, H., O'Brien, K.K., 2010. Scoping studies: advancing the methodology. Implement. Sci. 69 (5), 1–9. https://doi.org/10.1186/1748-5908-5-69.
- Liu, X., Lui, J., Xiox, X., Yang, T., Hou, N., Liang, T., Chen, J., Cheng, Q., Li, T., 2016. Correlation between nutrition and symptoms: nutritional survey of children with autism spectrum disorder in Chongqing, China. Nutrients 8 (5). https://doi.org/ 10.3390/nu8050294.
- Malhi, P., Venkatesh, L., Bharti, B., Singhi, P., 2017. Feeding problems and nutrient intake in children with and without autism: a comparative study. Indian J. Pediatr. 84 (4), 283–288. https://doi.org/10.1007/s12098-016-2285-x.
- Malone, C., Sharif, F., Glennon-Slattery, C., 2016. Growth and nutritional risk in children with developmental delay. Ir. J. Med. Sci. 185 (4), 839–846. https://doi.org/ 10.1007/s11845-015-1377-3.
- Martinez, E., Quinn, N., Arouchon, K., Anzaldi, R., Tarrant, S., Ma, N., Griffin, J., Darras, B., Graham, R., Mehta, N., 2018. Comprehensive nutritional and metabolic assessment in patients with spinal muscular atrophy: opportunity for an individualized approach. Neuromuscul. Disord. 28 (6), 512–519. https://doi.org/ 10.1016/j.nmd.2018.03.009.
- Meguid, N., Anwar, M., Bjorklund, G., Hashish, A., Chirumbolo, S., Hemimi, M., Sultan, E., 2017. Dietary adequacy of Egyptian children with autism spectrum disorder compared to healthy developing children. Metab. Brain Dis. 32 (2), 607–615. https://doi.org/10.1007/s11011-016-9948-1.
- Melunovic, M., Hadzagic-Catibusic, F., Bilalovic, V., Rahmanovic, S., Dizdar, S., 2017. Anthropometric parameters of nutritional status in children with cerebral palsy. Mater. Soc. Med. 29 (1), 68–72. https://doi.org/10.5455/msm.2017.29.68-72.
- Mlinda, S., Leyna, G., Massawa, E., 2018. The effect of a practical nutrition education programme on feeding skills of caregivers of children with cerebral palsy at Muhimbili National Hospital, in Tanzania. Child Care Health Dev. 44 (3), 452–461. https://doi.org/10.1111/cch.12553.
- Moludi, J., Ebrahimi, B., Maleki, V., Saiedi, S., Tandarost, A., Jafari-Vayghyan, H., Alizadeh, S., Djafarian, K., 2019. Comparison of dietary macro and micronutrient intake with physical activity levels among children with and without autism: a casecontrol study. Prog. Nutr. 21 (S2), 49–55. https://doi.org/10.23751/pn.v21i2-S 6578
- Nishioka, S., Omagari, K., Nishioka, E., Mori, N., Taketani, Y., Kayashita, J., 2020. Concurrent and predictive validity of the Mini nutritional assessment Short-form and the geriatric nutritional risk Index in older stroke rehabilitation patients. J. Hum. Nutr. Diet. 33 (1), 12–22. https://doi.org/10.1111/jhn.12699.
- Nishioka, S., Wakabayashi, H., Yoshida, T., 2017. Accuracy of non-paralytic anthropometric data for nutritional screening in older patients with stroke and hemiplegia. Eur. J. Clin. Nutr. 71 (2), 137–179. https://doi.org/10.1038/ ejcn.2016.191.
- Norte, A., Alonso, C., Martinez-Sanz, J., Gutierrez-Hervas, A., Sospedra, I., 2019. Nutritional status and cardiometabolic risk factors in institutionalized adults with cerebral palsy. Medicina (Lithuania) 55 (5). https://doi.org/10.3390/ medicina55050157.
- Ogumjimia, S.I., Ajala, A., 2016. Participation of physically challenged people in agricultural value chain: implication on food sustainability in Nigeria. Agric. For. 62 (1), 165–174. https://doi.org/10.17707/AgricultForest.62.1.19.
- Pangaribowo, E.H., Gerber, N., Torero, M., 2013. Food And Nutrition Security Indicators: A Review (ZEF Working Paper No. 108). http://www3.lei.wur.nl/foodsecure/Publicat ions.aspx.
- Pei, L., Zang, X., Wang, Y., Chai, Q., Wang, J., Sun, C., Zhang, Q., 2016. Factors associated with activities of daily living among the disabled elders with stroke. Int. J. Nurs. Sci. 3 (1), 29–34. https://doi.org/10.1016/j.ijnss.2016.01.002.

- Pieters, H., Guariso, A., Vandeplas, A., 2013. Conceptual Framework for the Analysis of the Determinants of Food and Nutrition Security (FOODSECURE Working Paper No. 13) FOODSECURE. https://doi.org/10.22004/ag.econ.285141.
- Polack, S., Adams, M., O'banion, D., Baltussen, M., Asante, S., Kerac, M., Gladstone, M., Zuurmond, M., 2018. Children with cerebral palsy in Ghana: malnutrition, feeding challenges, and caregiver quality of life. Dev. Med. Child Neurol. 60 (9), 914–921. https://doi.org/10.1111/dmcn.13797.
- Quarmby, C.A., Pillay, M., 2018. The intersection of disability and food security: perspectives of health and humanitarian aid workers. African Journal of Disability 7, 1–9. https://doi.org/10.4102/ajod.v7i0.322.
- Raffee, Y., Burrell, K., Cederna-Meko, C., 2019. Lessons in early identification and treatment from a case of disabling vitamin C deficiency in a child with autism spectrum disorder. Int. J. Psychiatr. Med. 54 (1), 64–73. https://doi.org/10.1177/ 0091217418791443.
- Redondo Robles, L., Pintor de la Maza, B., Tejada García, J., García Vieitez, J.J., Fernández Gómez, M.J., Barrera Mellado, I., Ballesteros Pomar, M.D., 2019. Nutritional profile of multiple sclerosis. Perfil nutricional de la esclerosis múltiple. Nutr. Hosp. 36 (2), 340–349. https://doi.org/10.20960/nh.2023.
- Sato, M., Ido, Y., Yoshimura, Y., Mutai, H., 2019. Relationship of malnutrition during hospitalization with functional recovery and postdischarge destination in elderly stroke patients. J. Stroke Cerebrovasc. Dis. 28 (7), 1866–1872. https://doi.org/ 10.1016/j.jstrokecerebrovasdis.2019.04.012.
- Schwartz, N., Buliung, R., Wilson, K., 2019. Disability and food access and insecurity: a scoping review of the literature. Health Place 57, 107–121. https://doi.org/ 10.1016/j.healthplace.2019.03.011.
- Secker, D., Jeejeebhoy, K., 2007. Subjective Global Nutritional Assessment for children. The American journal of clinical nutrition 85 (4), 1083–1089. https://doi.org/ 10.1093/ajcn/85.4.1083.
- Sha'ari, N., Manaf, Z.A., Ahmad, M., Rahman, F.N.A., 2017. Nutritional status and feeding problems in pediatric attention deficit–hyperactivity disorder. Official Journal of the Japan Pediatric Society 59, 408–415. https://doi.org/10.1111/ ped.13196.
- Shannon, J., 2016. Beyond the supermarket solution: linking food deserts, neighborhood context, and everyday mobility. Ann. Assoc. Am. Geogr. 106 (1), 186–202. https:// doi.org/10.1080/00045608.2015.1095059.
- She, P., Livermore, G.A., 2007. Material hardship, poverty and disability among workingage adults. Soc. Sci. Q. 88 (4), 970–989. https://doi.org/10.1111/j.1540-6237.2007.00513.x.
- Shidfar, F., Darabkhani, P.B., Yazdanpanah, L., Karkheiran, S., Noorollahi-Moghaddam, H., Haghani, H., 2016. Assessment of nutritional status in patients with Parkinson's disease and its relationship with severity of the disease. Med. J. Islam. Repub. Iran 30, 454.
- Shimizu, A., Maeda, K., Koyanagi, Y., Kayashita, J., Fujishima, I., Mori, N., 2019. The Global Leadership Initiative on malnutrition–Defined malnutrition predicts prognosis in persons with stroke-related dysphagia. Journal of the American Directors Association 20 (12), 1628–1633. https://doi.org/10.1016/j. jamda.2019.07.008.
- Silva, B.N.S., Brandt, K.G., Cabral, P.C., Mota, V., Camara, M.M.A., Antunes, M.M., 2017. Malnutrition frequency among cerebral palsy children: differences in onset of nutritional intervention before or after the age of five years. Brazilian Journal of Nutrition 30 (6), 713–722. https://doi.org/10.1590/1678-98652017000600004.

- Spurway, K., Soldatic, K., 2016. "Life just keeps throwing lemons": the lived experience of food insecurity among Aboriginal people with disabilities in the West Kimberley. The International Journal of Justice and Sustainability 21 (9), 1118–1131. https://doi. org/10.1080/13549839.2015.1073235.
- Sucharew, H., Macaluso, M., 2019. Methods for research evidence synthesis: the scoping review approach. J. Hosp. Med. 14, E1–E3. https://doi.org/10.12788/jhm.3248.
- Sweetman, D.U., O'Donnell, S.M., Lalor, A., Grant, T., Greaney, H., 2019. Zinc and vitamin A deficiency in a cohort of children with autism spectrum disorder. Child Care Health Dev. 45 (3), 380–386. https://doi.org/10.1111/cch.12655.
- Takada, K., Tanaka, K., Hasegawa, M., Sugiyama, M., Yoshiiki, N., 2017. Grouped factors of the 'SSADE: signs and symptoms accompanying dementia while eating' and nutritional status—an analysis of older people receiving nutritional care in long-term care facilities in Japan. Int. J. Older People Nurs. 12 (3) https://doi.org/10.1111/ opn.12149.
- Tanaka, M., Momosaki, R., Wakabayashi, H., Kikura, T., Maeda, K., 2019. Relationship between nutritional status and improved ADL in individuals with cervical spinal cord injury in a convalescent rehabilitation ward. The International Spinal Cord Society 57, 501–508. https://doi.org/10.1038/s41393-019-0245-9.
- Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K., Colquhoun, H., Kastner, M., Levac, D., Ng, C., Sharpe, J.P., Wilson, K., Kenny, M., Warren, R., Wilson, C., Stelfox, H.T., Straus, S.E., 2016. A scoping review on the conduct and reporting of scoping reviews. BMC Med. Res. Methodol. 16, 15. https://doi.org/10.1186/s12874-016-0116-4.
- Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J., Horsley, T., Weeks, L., Hempel, S., Elie, A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M.G., Garritty, C., Straus, S.E., 2018. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169 (7), 467–473. https://doi.org/10.7326/M18-0850.
- Tsai, M.T., Chang, T.H., Wu, B.J., 2018. Prognostic impact of nutritional risk assessment in patients with chronic schizophrenia. Schizophr. Res. 192, 137–142. https://doi. org/10.1016/j.schres.2017.04.011.
- United Nations, 2006. Convention on the rights of persons with disabilities. In: Convention on the Rights of Persons with Disabilities and Optional Protocol, vol. 49.
- Wang, F., Cai, Q., Shi, W., Jiang, H., Li, N., Ma, D., Wang, Q., Luo, R., Mu, D., 2016. A cross-sectional survey of growth and nutritional status in children with cerebral palsy in West China. Pediatr. Neurol. 58, 90–97. https://doi.org/10.1016/j. pediatrneurol.2016.01.002.
- Weingartner, L., 2004. The Concept of Food and Nutrition Security (ODA-ALC Background Paper 1). http://www.oda-alc.org/documentos/1341934899.pdf.
- Weun, C.C., Hasnan, N., Latif, L.A., Majid, H.A., 2019. Nutritional status of post-acute stroke patients during rehabilitation phase in hospital. Sains Malays. 48 (1), 129–135. https://doi.org/10.17576/jsm-2019-4801-15.World Health Organization, 2011. World Report on Disability.
- Yanagimoto, Y., Ishizaki, Y., Kaneko, K., 2020. Iron deficiency anaemia, stunted growth, and developmental delay due to avoidant/restrictive food intake disorder by restricted eating in autism spectrum disorder. Biopsychosoc. Med. 14, 8. https://doi. org/10.1186/s13030-020-00182-y.
- Ying, C.Y., Harith, S., Ahmad, A., Mukhali, H.B., 2019. Indian Journal of Public Health Research and Development 10 (4), 752–758. https://doi.org/10.5958/0976-5506.2019.00793.9.